ROBOTTER I FOLKESKOLEN

BEGRUNDELSER, VISIONER, FAKTISK BRUG OG UDFORDRINGER I NORMALKLASSER
Gertrud Lynge Esbensen, Cathrine Hasse, Liv Gudmundsen, Mia Mathiasen, Mathias Breum, Kira Pumali, Emilie Brinks Andersen, Stine Harrekilde, Nanna Arason, Signe Rieland, Luna Lund Mathisen & Allan Sayedmirza

Robotter i Folkeskolen
Begrundelser, visioner, faktisk brug og udfordringer i normalklasser

DPU, Aarhus Universitet 2016
Titel
Robotter i Folkeskolen

Undertitel
Begrundelser, visioner, faktisk brug og udfordringer i normalklasser

Forfattere:
Gertrud Lynge Esbensen, Cathrine Hasse, Liv Gudmundsen, Mia Mathiasen, Mathias Breum, Kira Pumali, Emilie Brinks Andersen, Stine Harreklede, Nanna Arason, Signe Rieland, Luna Lund Mathisen & Allan Sayedmirza

Redigering:
Stine Trentemøller

Bedes citeret:
Esbensen et al. 2016. Robotter i Folkeskolen. Begrundelser, visioner, faktisk brug og udfordringer i normalklasser

Udgivet af:
DPU, Aarhus Universitet, 2016

© 2016, redaktørerne

Omslag og grafisk design:
Knud Holt Nielsen

ISBN:
978-87-7684-690-9 (E-udgivelse)
Indhold

1.0 INTRODUKTION .. 4

2.0 METODE ... 8
 2.1/ HVILKE ROBOTTER FINDES UDE PÅ SKOLERNE? .. 9
 2.2/ ANDRE STUDIER PÅ OMRADET .. 11

3.0 BEGRUNDELSER FOR AT ERHVERVE ROBOTTER ... 15
 3.1/ ROBOTTER MOTIVERER ... 15
 3.2/ EN FORVENTET ROBOTFREMTID .. 19
 3.3/ BRANDING OG ILDSJÆLE .. 22

4.0 PRAKTISK BRUG .. 25
 4.1/ HVEM BRUGER ROBOTTERNE I ALMEN UNDervISNING? ... 25
 4.2/ HVAD BRUGES ROBOTTERNE TIL? ... 27
 4.3/ HVILKE ROBOTTER BRUGES TIL HVAD OG HVORFOR I NORMALKLASSER? 31
 4.4/ PROGRAMMERING ... 33
 4.5/ TID OG ENGAGEMENT .. 34
 4.6/ ROBOTUNDervISNINGEN .. 40
 4.7/ HVILKE ELEVER APPELLEr ROBOTTER TIL? .. 42
 4.8/ DEN FAGFAGLIGE UNDervISNING .. 46
 4.9/ KØN .. 48
 4.10/ KONKURRENCE OG SAMARBEJDE ... 51

5.0 SAMMENFATNING OG KONKLUSION .. 55
 5.1/ SAMMENFATNING ... 55
 5.2/ INNOvATION .. 55
 5.3/ FREMTID .. 56
 5.4/ MOTIVATION .. 56
 5.5/ FAGDIDAKTISKE OVERVEJELSER .. 57
 5.6/ FORSKNING .. 59

CITEREDE VÆRKER ... 63
1.0 Introduktion

Projektet Robotter i Folkeskolen (RIF) blev igangsat i sommeren 2015 af forskere fra forskningsprogrammet Fremtidsteknologi, Kultur og Læreprocesser, samt en række studenterassisterenter fra Danmarks Institut for Pædagogik og Uddannelse, Aarhus Universitet. Hovedrapporten har to dele, der er blevet bearbejdet hver for sig: en del der omhandler robotter almenundervisningen og en del der omhandler robotter i specialundervisningen. I denne rapport præsenteres fortrinsvis robotter i almenundervisningen. Hvorfor er denne type forskning med robotter i folkeskolen relevant? Vi har foretaget en mindre rundspørge for at få en indikator på i hvor grad dette felt kræver forskningsmæssig bevågenhed. Vi har adspurgt 272 skoler og af disse har 239 svaret ja til at de enten bruger, har brugt eller overvejer at bruge robotter i undervisningen. Udgangspunktet for RIF-forsøgningen er spørgsmålet om, hvorledes skolerne begrunder deres interesse for at investere i robotter i undervisningen. Vi har ønsket at give nogle af lærerne, der driver arbejdet i skolerne en stemme, og også pege på nogle af de vanskelige situationer disse lærere ind i mellem står i. Vi har også ønsket at pege på de kommercielle interesser, der synes at præge skolernes engagement i at anvende robotter i undervisningen. Specialområdet og robotaktørernes rolle, som vi mener den fremtræder i denne mini-undersøgelse, har vi desværre ikke kunne inddrage i denne version af hovedrapporten, da materialet/analyserne ikke er til fulde færdigbehandlet på nuværende tidspunkt.

Er robotterne, som vi har set det i det øvrige Technucation-materiale, til dels indført af prestigerelaterede årsager men uden gennemtænkte pædagogiske begrundelser (se fx Hasse og Brok 2015)? Har man didaktiske overvejelser koblet til robotternes an-

skaffelse? Er skolerne interesserede i at bruge robotterne i forhold til den massive indflydelse automatiserede processer og robotter ventes at få på fremtidens arbejdsmarked?

Forskere fra Oxford University har offentliggjort en undersøgelse af det amerikanske arbejdsmarked, hvor de kommer frem til at op mod 42% af jobs, der tidligere har været varetaget af mennesker i servicesektoren og industrien, overtages af robotter og andre automatiserede processer (Frey & Osborne, 2013). I Danmark har Kraka og HK gennemførte en tilsvarende analyse, der-spår, at op mod 34% af det danske arbejdsmarked:

har en høj sandsynlighed (>70 pct.) for at blive automatiseret i løbet af de næste 20 år. Det drejer sig både om traditionelle job, der allerede er påvirket af automatisering, fx industrijob, men samtidig også en række “nye” job i fx servicesektoren, der ikke tidligere har oplevet automatisering (LO, 2014, s. 1).

Med indførelsen af robotter i skolen kan man give elever viden om og adgang til robotteknologi, der ikke blot forventes at ville ændre karakteren af det fremtidige arbejdsmarked, men også erstatte store dele af arbejdsstyrken med robotter og andre former for automatiserede processer. Men hvad er det egentlig eleverne lærer når der indføres robotter i undervisningen?

I vores empiriske nedslag har vi undersøgt hvilke intentioner ledelser, IT-vejledere og lærere, der står som initiativtagere til robotter til skolerne, har versus den faktiske brug af robotter i undervisningen. Denne måde at gribe undersøgelsen an på er klassisk for antropologisk forskning, der beskæftiger sig med at skabe indsigter i mere uformelle aspekter af det sociale; det betegnes også som, at antropologer beskæftiger sig med forskelle på diskurser og praksis (Hylland Eriksen, 2010).

Gennem disse nedslag har vi identificeret variation i den måde anskaffelsen af robotter begrundes på ude på skolerne, men grundlæggende kan vi pege på følgende italesatte begrundelser:
1. Flere lærere begrunder brugen af robotter med henvisning til, at de motiverer eleverne og giver succesoplevelser.
2. Robotbrug begrundes også med at det øger elevernes teknologiske forståelse og forbereder dem til en forventet fremtid.
5. Det er en ny måde at fremvise skoler som innovative på.

Ud over disse italesatte begrundelser har vi gennem deltagersonervation i på skolerne kunnet iagttagte at:

1. Robotterne sjældent anvendes med henblik på fagfaglige didaktiske overvejelser. I stedet synes selve ’hands-on’ tilstedeværelsen af robotterne, og indføringen i deres tekniske opbygning og kunnen, at være det egentlige indhold i undervisning med robotter. Her er undervisningen begrænset til undervisning i de robotter, der nu engang er anskaffet (i vores materiale ofte NAO eller LEGO Mindstorm).
2. Et nyt fokus på konkurrenceelementer i folkeskolen (i forbindelse med særlige typer robotter) ofte ikke er italesat som et eksplicit formål.
3. Indkøb og anvendelse af robotter i skolen drives langt overvejende af enkelte teknologi-interesserede ildsjæle, der bakkes op af lokale ledelser.
4. En hindring for den mere systematiske anvendelse af robotter i uddannelses sammenhænge er bl.a. at kodning og betjeningen af robotter forudsætter et stort tidsforbrug, hvis en underviser skal lære robotternes muligheder, potentiater og begrænsninger at kende.
5. En anden hindring er, at det er op til den enkelte underviser, at udtænke hvordan robotter kan indgå fagligt i de respektive fag.

Vi vil understrege, at det foreliggende studie ikke er at betragte som et fuldt udfoldet forskningsprojekt, men et mini-projekt, der kan bidrage til opbygningen af viden om hvilke spørgsmål, der kan stilles til forholdet mellem intentioner og praksisser på dette felt. Og dette på et område hvor der for nærværende mangler empiriske studier både i Danmark og internationalt.
Gertrud Lynge Esbensen er førsteforfatter på afsnit 3.0 og 4.0 hvor data på normalklassesemrådet analyseres, men Sammenfatning og konklusion (afsnit 5.0) fortrinsvis er skrevet af forskningsleder af Technucation-projektet Cathrine Hasse. Eventuelle spørgsmål og kommentarer til rapporten bedes rettet til: caha@edu.au.dk.
2.0 Metode

<table>
<thead>
<tr>
<th>Antal skoler besøgt</th>
<th>Samlet antal skoleinterviews</th>
<th>Antal feltobservationer på skoler</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>30</td>
<td>13</td>
</tr>
</tbody>
</table>

Det datamateriale der ligger til grund for analyserne i denne rapport om brug af robotter er indsamlet af studerende på følgende skoler:
I overensstemmelse med gældende regler for god forskningsetik er alle personnavne og skoler anonymiseret i den følgende analyse.

2.1/ Hvilke robotter findes ude på skolerne?

Den amerikanske robotforsker Cynthia Breazeal definerer sociale robotter som maskiner, der er designet til at interagere med mennesker på en naturlig interaktiv måde (Breazeal, Takanishi, & Kobayashi, 2008). En anden definition på den sociale robot kan være enten en autonom eller semi-autonom maskine, der interagerer og kommunikerer med mennesker ved at følge de normer for handlelign, der er fremherskende hos de mennesker, robotterne tænkes at interagere med (Bartneck & Forlizzi, 2004). Endelig er der forskere, der som Morana Alac, ikke kun ser på maskinen, men
indregner den måde mennesker forstår og interagerer med robotter på som afgørende for om robotten opfattes som social eller ej (Alac et al., 2011).

I vores materiale skal robotter ydermere ses som indlejet i en moderne dansk skolekontext, hvor mange skoler lægger vægt på at fremstå som teknologiorienterede. Denne teknologiorientering er sjældent koblet til refleksioner over teknologiens effekter på langt sigt, men fremstår bl.a. som et led i innovationsstrategier (Hasse & Brok, 2015).

Når vi spørger skolerne, hvilke robotter de har, er det tydeligt at grænsen mellem robot og anden elektronik er forholdsvis flydende – det betragtes alt sammen som ’ny teknologi’ og er som sådan omgærdet med en særlig bevågenhed og forestillinger om at være fremtidsorienteret. Denne konstatering følger mønstret fra Technucation projektet, hvor teknologi i skolen bliver italesat som om al teknologi er elektronisk (fx interaktive tavler, tablets, robotter mv.), mens blyanter og bøger sjældent omfattes af betegnelsen ”teknologi” (Hasse & Brok, 2015). At robotter omtales i forhold til anden elektronisk teknologi relaterer sig til dels til, at robotter, som for eksempel Aldebarans humanoid NAO, programmeres på en computer ligesom LEGO Mindstorm også programmeres på computer eller tablet.

Endvidere er det i flere undervisningsobservationer svært at skelne hvornår LEGO Mindstorm anvendes som robot og hvornår eleverne i forløbene i højere grad fokuserer på byggetechniske aspekter med legoklokker. På én skole fortæller læreren, at det kan skyldes, at underviserne forsøger at holde fokus på programmeringsdelen, hvorimod eleverne synes, at det er sjovest at bygge robotterne.

De robotter vi erfærer skolerne indkøber eller låner i efteråret 2015 er tre semi-autonome programmerbare robot-typer: NAO, Zeno og LEGO Mindstorm. Zeno ser vi dog kun brugt i specialklasserne. Der er desuden andre robotter i spil (såsom Dash and Dot, Beam+ og droner) som vi ikke observerer. Robotterne er i skrivende stund forskellige i pris og anvendelse. Der er andre robotter i spil i folkeskolen end de her nævnte, men de er ikke blevet dækket af denne undersøgelse.
2.2/ Andre studier på området

I Danmark findes få universitetsbaserede undersøgelser af skolers anvendelse af robotter. Det er karakteristisk at de undersøgelser ofte er samfinansierede eller udelukkende igangsat af robo
tdistributører. Der findes i Danmark adskillige private eller semi
statslige virksomheder, der er importører af eller selv bygger/udvikler robotter, der bl.a. kan anvendes til skolebrug. Flere forskere på universiteter og professionshøjskoler
har også fået øje på robotterne, bl.a. miljøer på Syddansk Universitet, professionshøj
skolen UC Sjælland, samt både PENSOR og TRANSOR grupperne på Aarhus Univers
sitet, der samarbejder med forskningsprogrammet Fremtidsteknologi, Kultur og Lære
processer (FTKL) bag denne rapport.

Det universitetsbaserede projekt, der mest direkte har fået finansiering til at for
mulere en egentlig robotdidaktik er Fremtidens teknologi i uddannelserne (FREM
tek). Her har forskere fra Syddansk Universitet i samarbejde med Insero Science Academy i 2013-2014 arbejdet med de didaktiske muligheder ved ny teknologi i folkesko
len. De har anvendt 3D printere og NAO robotter på 20 skoler og gymnasier med hen
blick på at undersøge, hvordan disse teknologier konkret kan understøtte børns læ
ringsmiljø, hvilke krav det stiller til didaktisk planlægning og forberedelse samt med
hvilken effekt nye teknologier kan bringes ind i uddannelserne2 (Majgaard, Hansen,
Bertel, & Pagh, 2014, s. 8).

Skoler og gymnasier, der har deltaget i FREMTEK projektet har kunnet vælge mellem at låne klassesæt til 3D printere eller NAO robotter. De, der har deltaget i
NAO-delen har lånt et klassesæt med 3 NAO robotter og 8 bærbare pc’er (Insero Sci
ence Academy, 2013). Projektet inkluderede todages workshop for lærere som har for
pligtet sig på, at anvende NAO i undervisningen i otte til ti sessioner med én klasse.
Som det nævnes, tager FREMTEK grundlæggende udgangspunkt i, at de to udvalgte
teknologier kan understøtte børns læring, ligesom de understøtter læringsforløbende.

2 Der er ikke overlap mellem skoler der har deltaget i FREMTEK projektet og de, der har delta
get i vores undersøgelse.
På baggrund af FREMTEK projektet opsummerer en af forskerne fra projektet følgende:

Vores forskningsspørgsmål er som følger: Hvordan kan NAO-robotter og 3D-printere konkret understøtte børns læringsmiljø? Og hvad stiller det af krav til didaktisk planlægning og forberedelse? … Vores forskningsmetode er baseret på design-based research, som er en forskningsmetode, der egner sig til undersøgelse af hvordan teknologi og undervisningsdesign kan understøtte læring i klasserummet (Maigaard, 2011b). (Maigaard, Hansen, Bertel, & Pagh, 2014, s. 8)

Præmissen for FREMTEKs didaktiske forskning er, at der mangler overvejelser over, hvad robotterne egentlig skal i skolen:

Grundlæggende er der et behov for at udvikle en kritisk og kreativ refleksion over og diskussion af robotteknologi som mål og middel i skolen og andre uddannelsesinstitutioner. (Hansen, 2015, s. 2f)

I modsætning til FREMTEK er vores tilgang ikke didaktisk, men af en anden type. Vores forskning er ikke et udviklingsprojekt, men en etnografisk udforskning af et ellers upåagtet hverdagsliv, som det udspiller sig, når forskere ikke igangsætter men observerer arbejdet med robotteknologi i skolen uafhængig af kommercielle interesser. Denne forskning tager ikke sigte på udviklingen af den didaktiske forskning, men kan i visse tilfælde forstås som et supplement til den didaktiske forskning og, i visse tilfælde, som et grundlag for en forbedring af didaktisk forskning. Fremfor at antage at robotter i sig selv er specielt igangsættende for læring, ser vi på de betydningskonstruktioner og nye relationer, der opstår med robotter i skolen. Hvor FREMTEK i et samarbejde mellem forskning og erhvervsvirksomhed søger at afdække relevant didaktisk anvendelse af robotterne, viser det sig i vores forskning at robotten i sig selv bliver ’prime mover’ som igangsætter af aktiviteter, som man efterfølgende søger at begrunde didaktisk.

Der er stor forskel på, hvorfor skolerne anskaffer robotterne, men det sker tilsyneladende sjældent på baggrund af realistiske didaktiske overvejelser over, hvad de sociale robotter er og kan. Skolerne har valgt at købe forskellige typer robotter og her ser vi en stor, men ofte ureflekteret, forskel på LEGO Mindstorm, der præsenteres som et koncept med indbyggede muligheder for både didatik i forhold til robotbygning og konkurrencer, og den færdigbyggede robot NAO, der snarere appellerer til elevernes programmeringsevner. I langt de fleste tilfælde indføres robotter af teknologioptagede ’ildsjæle’ på skolerne, og deres anvendelse bredes sjældent ud som et fagligt bidrag til
større dele af lærergrupperne. I alle tilfælde er robotterne igangsættere af faktiske og situerede (men ikke didaktisk-overvejede) læreprocesser. I det følgende vil vi gennemgå en række af skolernes begrundelser for at anskaffe robotter, og diskutere dem i forhold til robotternes faktiske anvendelse.

Vi præsenterer relevante citater fra de interviews vi har foretaget, der efterfølgende vil blive analyseret i forhold til såvel deltagerobservation og interviews, der afspæjler de faktiske anvendelser og erfaringer.
ROBOTTER I FOLKESKOLEN
BEGRUNDELSER FOR AT ERHVERVE ROBOTTER
– NORMALKLASSERNE
3.0 Begrundelser for at erhverve robotter

Hvilke begrundelser angiver skoler i den almene skolesammenhæng, når de køber eller låner robotter? Vi har spurgt lærere til egne samt skolens begrundelser for, hvorfor robotter bør inddrages i folkeskolen og i undervisning. Derudover har én skoleledelse personligt uddybet deres visioner, og én ledelse har i et telefonisk interview givet et kort svar på deres begrundelser. De begrundelser skolerne giver for, hvorfor de investerer i eller låner robotter til normalklasserne kan inddeles i tre kategorier:

1. For at motivere elever.
2. For at forberede eleverne til en forventet fremtid.
3. For at skolen kan være teknologisk ‘first-mover’, det vil sige kan profilere sig på teknologi.

I det følgende vil vi komme nærmere ind på hvad kategorierne indeholder.

3.1/ Robotter motiverer

Nogle skoleledere forestiller sig at robotter i undervisningen vil kunne engagerere eleverne på nye måder og igangsætte nye undervisningsformer. Som understreget i FREMTEK projektet, er det ikke teknologierne som sådan ”der alene bærer gevinsterne i sig, men derimod deres tilknytning til et didaktisk design” (Majgaard, Hansen, Bertel, & Pagh, 2014, s. 12). Alligevel giver mange ledere udtryk for en forventning om, at det er robotten i sig selv, der kan udvikle læringsmiljøer. For eksempel begrunder en skoleleder deres valg om at købe en NAO robot således:

> LE: Vi syntes, det kunne være spændende at lave nogle anderledes læringsmiljøer og på den måde udfordre læring. … Vi havde håb og forventninger om, at robotten kunne opfylde et ønske om, at udvikle læringsmiljøer på en kreativ og spændende måde. At [vi lærer, at] tænke undervisning på en anderledes måde.

Vi hører flere skoler, der forventer at robotter kan stimulere udvikling af anderledes, kreative og spændende læringsmiljøer. Mange af de lærere og skoleledelser vi taler med, beretter at de oplever, at robotten i sig selv er en motiverende faktor for eleverne. For eksempel fortæller én lærer:
LÆ: Jeg synes, at der er en umiddelbar begejstring for børnene ved det her. Det er sjovt at få en død ting til at gøre et eller andet man ønsker. Det er sådan lidt gude-agtigt.

Her, som i andre tilfælde, gøres der ikke forsøg på at begrunde købet af robotten som en motivationsfaktor baseret på en fagdidaktisk tænkning. Udover de anderledes, kreative og spændende læringsmiljøer som ledelserne ønsker at udvikle, begrundes undervisning med robotter også med, at denne type undervisning antages at motivere og begejstre eleverne. Læreren beskriver en magtfornemmelse som brugere af robotter kan opleve, når de lykkedes med at opleve fuld kontrol over en robots handlinger. I vores materiale ser vi, at robotterne motiverer ledelser og robotansvarlige og mange lærere beskriver at også en del elever begejstres og motiveres af undervisningsforløb med robotter. En skoleleder argumenterer for robotteknologiens motiverende faktor, idet den tjener til at fremme elevernes teknologiske nysgerrighed.

LE: Det handler om den teknologinysgerrighed og den teknologikompetence. At ligegyldigt hvad du får i hænderne - hvad enten man er lærer eller elev, så får man en evne til at kaste sig over det og angribe det og finde ud af hvordan man kan bruge det...

Denne skoleleder fortæller, at de blev inspirerede til at indkøbe en NAO robot, da de på et tidspunkt, hvor de har erfaring med at arbejde med First LEGO League (FLL), bliver introduceret til en Youtube video med NAO af skolens it-leder som har set videoen på en konference. De ser videoen og lederen fortæller om den:

LE: Så står der tilfeldigvis en af vores drenge. Han … går på HTX nu. … Og han havde været udsat for en ikke så god engelsklærer … på en anden skole. Og han har faktisk skiftet skole herover til, fordi han blev møbnet af den der engelsklærer, og så siger han så: … “tænk hvis jeg havde haft NAO som engelskunderviser”. For den snakkede jo engelsk, ikke … Og han var jo fascineret. Og han stod høren på, og så var jeg jo slet ikke i tvivl om, at så skulle jeg finde de 100.000 [kr.] til den. Så fik vi jo de næste sponsoreret, og vi kunne jo bare se, hvad den gjorde ved ungerne, ik’.

Robotten opfattes altså på denne skole som en teknologi, der kan fascinere og motivere unge, der har det svært. Lederen hæfter sig ved den tidligere elevs fascination i sin begrundelse for at anskaffe robotten. Hans bemærkning om at “vi kunne jo bare se, hvad den gjorde ved ungerne”, tyder på at lederen oplever at NAO har en fascinationskraft, der generelt motiverer eleverne.
Ovenstående viser, at det i udgangspunktet er udsigten til, at kunne anvende NAO i fagfaglig (engelsk) undervisning (fordi den 'kan engelsk') i kombination med at den virker fascinerende på den tidligere folkeskolelev, der oprindeligt begrunder skolens første køb af en NAO robot. Der er imidlertid også andre end fagfaglige begrundelser for at anskaffe robotter. Flere skoleledere og lærere giver udtryk for, at robotter først og fremmest er indkøbt med det formål at engagere de elever, der ikke anses at være bogligt orienterede. Her antages robotter at give særlige muligheder, der flytter fokus fra læring af fx et skriftsprog til 'gøre-handlinger'. På et spørgsmål om hvad der motiverer dem til at bruge robotter i undervisningen forklarer en lærer, at det relaterer sig til:

LÆ: Det her med, at vi jo gerne skulle se nogle andre børn, end dem der sådan plejer at komme frem i den almindelige boglige daglige undervisning. Pludselig sker der nogle andre ting. Dem/ den her fantasi som nogle gange kan være rigtig svær at få ned på et stykke papir. Dem der for eksempel har svært ved at skrive og sådan noget. Det er super motiverende at se dem når de får fingrene i noget af det her. For eksempel da vi havde den der Minecraft-uge, hvor du også var her. Der var jo nogle drenge inde i min klasse som pludselig... jamen de var jo fuldstændig tændte i den uge! - hvor de i det daglige kan sidde og være sådan helt; jeg kan ikke finde ud af noget. Hvad skal jeg gøre? Og jeg ved ikke, hvor meget de fangede, at der var nogle læringsmål bagved, og der var nogle fag bagved. Det tror jeg ikke, men det var bare hele det der med, de levede sig bare fuldstændig ind i det her univers, der var, hvor vi skulle programmere...

Det argument denne lærer fremfører er, at den anderledes type undervisning gør, at andre elever, end dem der til daglig er aktive i undervisningen, bliver motiverede og får lejlighed til at vise deres kompetencer. Her ses det endvidere, at når der spørges til robotter, foretager lærerne en begrebsudvidelse til elektroniske aspekter, såsom tablet-brug, Minecraft mv.

Den samme skoles ledelse fortæller, at de er inspirerede af et fortælling fra firmaet Grundfos, der angiveligt skulle have erfaret, at ordblinde ansatte, gennem deres læse- og skriveudfordringer i folkeskolen, har udviklet en unik evne til at udfikle problemløsningsstrategier. Skoledelen udleder af eksemplet, at elever udvikler handlekompetencer af, at skulle udvikle løsninger på problemer, hvor løsningerne ikke ligger lige for, og disse kompetencer søger de motiverede gennem elevernes læring med robotter. De "andre elever", som læreren i det tidligere citat oplever det, blomstrer op, når der ikke er fokus på den almindelige daglige boglige undervisning, betegnes som værende 'gøre-mennesker' af to lærere:
LÆ1: Jeg tror meget man fanger de der 'gøre-mennesker'. Dem vi i gamle dage... dem der blev håndværkere og alt sådan noget. Dem fanger vi lige pludselig med denne her form for robotter, for det er jo også en hverdag for dem derhjemme. At sidde og spille på tabletten, computeren eller iPad'en eller hvad ved jeg. Hvad de nu spiller på derhjemme ikke, så de lige pludselig hiver dagligdagslivet hjemmefra ind i skolen. Så de har lige pludselig en helt anden bevægelsegrund, ikke? Og [disse elever har] et kæmpe ordforråd inden for det her. Jeg synes da nogle gange, må jeg komme til kort over for nogle af de her små, altså selv i 1. klasse hvor de kan programmere meget mere end jeg kan ...

LÆ2: … Og egentlig motivationen i det ikke? Det var sådan det, jeg tænkte meget, da vi startede ud med det her. Jeg synes, det var fedt at lade børnene prøve noget andet end ba-re, at skal sidde på deres flade, hele dagen, ikke? At de kommer ud og rør sig lidt og tæn-ker skævt. Det kan jeg godt lide. Men jeg vil sige i samme åndedrag, så er det jo ikke altid vi rammer de svage elever med det her. Der er lige så lidt de, svage elever også falder igen-nem her og ikke kan finde ud af det, fordi kravene måske er lidt... lidt store her i skolen her ikke?

inspirator i sig selv, der kan motivere tilsyneladende gøre-elever til at opøve kompetencer, der er knyttet til tekniske færdigheder og problemløsning.

3.2/ En forventet robotfremtid
En anden mere generel gennemgående begrundelse som lærere og ledelse giver for, hvorfor robotter er relevante for folkeskolen, er, at skolen skal forberede alle elever til fremtiden. I denne optik ses erfaring med robotter og programmering som et middel til dette. Dette tema baserer vi på udtalelser som denne:

LÆ: Den [NAO] skal klart give eleverne en fornemmelse af, hvad programmering kan. Og så skal den også gerne - det er noget vi har lagt til senere, det var ikke vores udgangspunkt - men den skal også i dag, kunne være et eksempel på vores fremtid og det vi arbejder hen imod. Vi har her på stedet en tanke om, at vi gerne vil klæde vores elever så godt på til fremtiden og robotter er unægteligt en del af fremtiden. Og så, det de [robotdistributører] præsenterede for os i hvert fald, var et stykke gadget, hvis man må kalde det, det som kan noget mere end det som man ser lige ved første øjekast. Så den skal i hvert fald kunne..., det er lidt et kig ind i fremtiden.

NAO indkøbes altså i dette tilfælde blandt andet for at give elever indtryk af hvad programmering er, og for at forberede dem på fremtiden. Hvordan og på hvilke måder programmeringserfaringer og erfaringer med NAO som sådan tænkes omsat eller ses som relevant for folkeskolen, begrundes ikke eksplicit, ligesom begrundelserne stadig er præget af fravær af fagfaglige aspekter. Fremtidsperspektivet, der tales om i dette interview i 2015, antager at samfundet vil være mere præget af robotter i fremtiden. Om de muligheder dette giver, udtaler samme lærer:

I: Hvilke muligheder ser du, I har med robotter i undervisningen?

I denne lærers optik italesættes det som skolens målsætning at ‘skubbe’ eleverne i en teknisk eller naturvidenskabelig retning. Det er dog relevant at nævne, at denne lærer også fortæller, at det på skolen primært er ham, der bruger NAO. Der er et par andre lærere, der er interesserede, men de får ikke rigtig brugt den. Han fortæller også, at der
er modstand fra nogle lærere på skolen. Det indikerer at disse målsætninger ikke er fælles for skolens lærergruppe, så det ‘vi’ han taler fra, gælder kun nogle på skolen.

Flere skoleledere ser robotter som en integreret del af fremtidens arbejdsmarked, hvor de taler mod et scenarie hvor mennesker enten kan agere som passive maskiner, der venter på inputs, eller kan være initiativtagere, der kan sætte sig selv i gang. Det at blive initiativtagere antager de, forudsætter, at eleverne mestrer teknologier som NAO robotten.

I: Hvordan tænker I, at det teknologiske fokus kan hjælpe eleverne?

Ledelsen opererer her med nogle forestillinger om hvad man har brug for på fremtidens arbejdsmarked, og dette argument går igen i interviewet med denne skoles lærere. På denne skole tales robotternes rolle op som næsten synonym med den fremtid, eleverne skal uddannes til. Endvidere indikerer ledelsen, at det, at deres elever er eftertragtede af HTX og STX, er endnu et succeskriterie. Begrundelserne for at anskaffe robotterne er således igen ikke folkeskolens faglige uddannelsesmål, men hvad ledelsen antager, bliver samfundets fremtidige behov. Her er der forskellige begrundelser knyttet til forskellige robotter. I nogle tilfælde er det selve det at kunne bygge en robot (som LEGO Mindstorm), i andre er det programmering (som NAO).

LÆ: Den [NAO] skal klart give eleverne en fornemmelse af, hvad programmering kan.

Denne lærers begrundelse for at anvende robotter i undervisningen er eksplicit, at give eleverne erfaringer med programmerings potentialer. Denne lærer er en af dem, vi betegner som ‘ildsjæle’ på området. Men ikke alle de ildsjæle vi taler med, er enige om, at det er relevant, at elever lærer at programmere i folkeskolen via en robot. I nedenstående citat udtrykker en lærer for eksempel, at han godt kan se fornuften i at bygge robotter og få den form for hands-on erfaringer. De har også arbejdet med NAO, men han fandt at selve programmeringsdelen kan læres langt bedre på andre måder end ved at programmere NAO:
LÆ: Så handler det også om at bygge en robot i Mindstorm. Det gør det jo ikke i, ved NAO. Der handler det om at programmere den.

I og med NAO handler meget om programmering, har denne lærer ikke fundet den nær så relevant som det at lære at bygge robotter (som i LEGO Mindstorm). Disse didaktiske overvejelser kommer dog først efter at begge robottyper har været anskaffet og anvendt i undervisningen. På denne skole er det ikke den hardcore programmersingsdel, som de lægger vægt på i anvendelsen af robotter. I stedet er de meget interesserede i det at bygge og lege med robotten. Den skal kunne vække noget glæde og begejstring i eleverne.

Denne lærer indikerer, at robotbrug for ham skal give eleverne mere end blot programmeringskompetencer; det skal dels give begejstring i undervisningen men også grundlæggende måder at tænke om robotter på. Han nævner videre i interviewet, at han anskuer det som en indgangsvinkel til at tale om almindelige problemer som samarbejde, og han omtaler slet ikke problemløsning i interviewet. En tredje skole begrunder deres robotfokus med udgangspunkt i samfundets og hele verdenens behov:

I: Hvorfor ser I jer selv som en IT skole?

LÆ: Det gør vi fordi, at vi mener, at IT er en så stor del af vores samfund, at vi er nødt til at omfavne det på en ordentlig måde. Og der er nogle forventninger om at kunne begå sig i en verden, der er præget af teknologi - og det synes vi ikke, at vi kan stå tilbage for. Så vi vil gerne helt derud, hvor vi prøver nogle ting af, som vi endnu ikke rigtig ved, om bliver til noget. Det er NAO et eksempel på. Altså nu er han faldet til, så han er ikke noget af det nye længere, men alligevel så er han et godt bilde på, at vi vil noget som vi ikke rigtig/ altså vi kan ikke helt, når vi anskaffer os nye ting og bruger nye former for lærermidlerl så er det ikke altid vi ved, hvor det bringer os hen.

Fremtidsperspektivet betyder også, at mange erkender, at de ikke er helt er klar over, hvad robotterne skal anvendes til i en faglig sammenhæng. Netop den ukendte fremtid gør det, i denne optik, nødvendigt at være mere risikovillig – også selv om robotten tilsyneladende ikke anskaffes med en bestemt funktion für øje. En enkelt lærer betegner det som en del af elevernes almindeligt at have kendskab til robotter, der vil præge fremtidens arbejdsmarked. En lærer giver sit perspektiv på, hvorfor robotter er relevante i folkeskolen:
LÆ: Man kan ikke se bort fra, at vores samfund bliver mere og mere robotpræget på arbejdsmarkedet. Så der ville jo, og det er der allerede, komme mere efterspørgsel efter folk, der kan et eller andet med robotter… Det vil der blive mere og mere af.

I: Så det er også fokuseret på arbejdshavet?

LÆ: Nej, nej bestemt ikke. Det skal folkeskolen aldrig nogensinde sigte efter. Men det skal være en afspejling af, hvad der er ude i samfundet. Ligesom sløjdtimer stadig er vigtige, for selvom vi ikke går og reparerer vores ting - vi køber bare noget nyt i IKEA - så er det stadig vigtigt, at man, har den kulturelle arv med i, at jeg ved, hvad en hammer er. Jeg ved hvad en sav er, og jeg kan finde ud af at bruge begge dele. Bare fordi at det simpelthen er en del af livet. Det tror jeg robotteknologi vil blive i fremtiden, altså det vil blive sådan en essentielt ting, det er sådan noget, det skal man kunne gøre selv. Og noget af det, det får man intuitivt med i sin opvækst.

Denne lærer oplever folkeskolens rolle i forhold til arbejdsmarkedet ganske anderledes end nogle af de andre skolers lærere, og han finder det relevant at understrege, at skolen i hans optik ikke skal sigte efter at dække specifikke arbejdshav. I hans perspektiv skal undervisningen snarere afspejle det samfund, eleverne er en del af, og det er hans begrundelse for at inddrage robotter i sin undervisning.

3.3/ Branding og ildsjæle

Flere skoleledere og lærere begrunder også mere eller mindre eksplicit deres anskaffelse af robotter med, at det gør det muligt for skolen at ’brande sig’ som en særligt teknologividen skole. Det har i nogle tilfælde overskygget refleksioner over, hvad NAO faktisk skulle anvendes til og af hvem. For eksempel noterer en assistent i sin rapport over sine observationer på én af skolerne:

NAO robotten blev købt som lidt af et prestige projekt af deres tidligere skoleleder. Således var der ikke tænkt synderligt meget over, hvordan NAO skulle bruges, hvilket desværre også har bevirket, at NAO ikke rigtig bliver brugt den dag i dag. Det er derimod en anden sag med LEGO Mindstorm robotterne. I købet af LEGO Mindstorm følger der en masse pædagogiske tanker med, hvilket gør dem nemmere at anvende i undervisningen. Derudover er LEGO Mindstorm robotterne også noget mere simple at anvende, hvilket også har gjort, at det er LEGO Mindstorm og ikke NAO som den dag i dag bliver anvendt på skolen… Meget af købet af NAO lå i, at der var tale om en god sælger… NAO blev dengang
set som fremtidens artefakt inden for undervisning, og det ville skolen gerne være en del af.

Denne beskrivelse viser et aspekt af at ildsjæle overvejende driver implementeringen af robotbrug i den daglige undervisning, nemlig at robotbrug i undervisningen i mange tilfælde er båret oppe af enkeltpersoner. Ovenstående forklaring har assistenten fået af en lærer, der er positivt stemt overfor at implementere LEGO Mindstorm, samtidig lærer vi at det, at initiativtageren til at købe NAO er stoppet på skolen gør, at NAO ikke bruges så meget. Vi finder det ligeledes relevant at hæfte sig ved, at de på denne skole fortæller, at en god sælger influerede på anskaffelsen af NAO robotten, gennem et narrativ om fremtidens behov.

Alle skolerne i vores forskning har anskaffet robotter på grund af nogle ildsjæle, enten blandt skoleledelsen eller skolelærere. Disse ildsjæle har helt personlige interessser i robotterne, der ofte er knyttet til en generel interesse for IT og gadgets. Dette er et særligt forhold der dels gør, at disse lærere i mange tilfælde frivilligt har brugt ekstra tid på at sætte sig ind i robotterne, men det gør også, at robotterne ofte ikke implementeres indenfor den normale forberedelsesnorm. Vi spurgte ind til motivationen bag robotbrug:

I: Hvor stammer din motivation for at gå i gang med arbejdet med NAO fra?

LÆ: Det stammer fra to steder; dels personlig interesse for alt, hvad der er nyt og selvfølgelig også på at præsentere det for vores elever. Og så stammer det fra, ud fra den tanke at programmering måtte blive sjovere, mere interessant, hvis man havde noget der var fysisk og kunne, ja var et fysisk tegn på det, man har siddet og programmeret. Det er sådan set de to drivkrafter.

I: Har programmering altid været på skemaet?

LÆ: Det har det været før ved vores IT og valgfag.

Denne lærer udtrykker, som en anden skoles lærere tidligere har gjort, at ét formål med robotter i undervisningen er, at elever skal lære at programmere. Her tilføjes der yderligere det aspekt, at læreren har set behov for, at programmering gøres sjovere med en robot til at kunne vise resultater af programmeringen. Denne lærer underviser i IT og valgfag, og er skolens drivende kraft hvad angår robotter. Flere ildsjæle fortæller, at de har svært ved at få deres lærerkolleger ‘med på vognen’, men nogle af dem er også meget reflekterede omkring det at ‘hype’ teknologier. At blive begejstret uden at
have gennemtænkt de langsigtede didaktiske fordele og ulemper. For eksempel fortæller en anden lærer:

Denne lærer udtrykker sig mere kritisk refleksivt end flertallet af dem vi har talt med i denne undersøgelse, og som vi tolker det, beskriver han her en udfordring om at mangle et mere langsigtet formål med brugen, som kan fastholde elevernes arbejdslust med robbenen.

I de fleste tilfælde står ildsjælne ret alene med deres teknologibegejstring, selv om det bakkes op af ledelserne. På enkelte skoler, er det hele skolekulturer der er i gang med at blive bygget op omkring en eksplorativ begejstring for 'alt det nye':

LÆ: Vores tilgang til IT, gadgets og medier her på stedet det er, at vi har åbne arme for alt, hvad der er, og så prøver vi det af. Og i den kontekst har robbenen også været en del af det, altså vi har købt den ind fordi, at vi ville prøve at lege med, hvad den kunne ud af, hvad den kunne bibringe os. Vi ser os selv som en frontløber på IT-området, og så kan vi selvfølgelig ikke være uden en robot. Men hvis man skal have noget ud af det, så kræver det, at man bruger noget tid. Det er svært at gøre det på en enkelt lektion. Det kræver et længere stræk, før man får eleverne med til virkelig at bidrage med noget. Så det prøver vi i vores valgfag at gøre... Der er her på stedet et ønske om, at vi prøver forskellige ting af, og så må vi få didaktikken og pædagogikken til at passe ind bagefter.

Denne lærer ekspllicerer, som den eneste vi har talt med, at man på denne skole har valgt at brande sig og vælge en eksplorativ tilgang til "IT, gadgets og medier”, og dermed acceptere at tilpasse didaktikken og pædagogikken efterfølgende.
4.0 Praktisk brug

Indledningsvist præsenterer vi en oversigt over det antal lærere, vi har talt med, der er knyttet til undervisning med robotter med normalklasser. Denne oversigt er baseret på informationer, vores assistenter har fået, på skolerne de har besøgt. Efterfølgende bringer vi lærernes stemmer i spil, for at nuancere baggrunde for hvem der bruger robotterne, til hvad og deres erfaringer med det.

4.1/ Hvem bruger robotterne i almen undervisning?

På tværs af de seks skoler der indgår i vores analyse af robotbrug i normalklasser, møder vi følgende lærere, der er direkte involve ret i brugen af robotter: Én kvindelig robotansvarlig lærer og ni mandlige lærere, hvoraf de tre også er IT-ansvarlige lærere. Foruden disse personer er alle lærere på én af skolerne i datamaterialet pålagt at anvende robotter af ledelsen.

Denne oversigt understøtter pointen om, at robotbrug på flere skoler er båret af ildsjæle og fungerer på enkeltindividens initiativ. Som oversigten indikerer, er det ofte skolens IT-ansvarlige eller robotansvarlige, der er primærbruger. Dette kan på én side ses som en banal pointe, som er konsekvens af, at læreren har fået denne rolle, men som dette afsnit vil vise, er denne pointe ikke helt så banal, som den umiddelbart kan se ud. I det følgende bringer vi skolernes perspektiver i spil for at nuancere oversigten.

På en skole får vores assistent at vide:

Alle lærere har mulighed for at bruge robotterne i undervisningen, men det er kun to af lærerne, der gør brug af muligheden. Dette skyldes, som [den robotansvarlige lærer] siger i interviewet, at de synes, det er for svært at give sig i kast med. Der skal bruges for meget tid på at sætte sig ind i det, og så har mange også den indstilling, at de gamle læremidler er lige så gode eller måske endda bedre. Det betyder dog ikke, at de andre lærere ikke er interesserede i den anderledes undervisning. De synes, det er spændende at høre om, hvordan, og til hvad, robotterne bliver brugt, men de gider bare ikke selv engagere sig i det...

Som [robotansvarlig lærer] også siger, så har han jo brugt rigtig meget tid på at sætte sig ind i det derhjemme. Da han har små børn, har de også været en drivkraft til at lære at bruge primært Mindstorm. Han har brugt sommerferier sammen med børnene på at lære
Det er svært at give sig i kast med at arbejde med at programmere og få robotterne til at fungere i en undervisningskontekst, hvilket til dels relaterer sig til, at lærerne skal bruge utrolig meget tid på at sætte sig ind i det. Dernæst berøres spørgsmålet om, hvad robotter som læremidler kan gøre, der ikke allerede kan gøres med allerede kendte læremidler. Dette tyder på at lærere, der ikke arbejder med robotten, ser den som et fagdidaktisk redskab, ligesom FREMTEK rapporten også gør. Den robotansvarlige lærer beskriver, at han selv har brugt meget tid, inklusiv fritid på at lære LEGO MINDSTORM at kende og for at udvikle måder, hvorpå det kan bruges i undervisningen. Det er relevant, fordi det bliver tydeligt, at ud over at det er meget tidskrævende, så fremstår det endvidere uklart for flere lærere, hvilke faglige argumenter der er for at anvende robotter i undervisningen. På denne baggrund er det relevant at forholde sig til hvad succeskriterier for undervisning anses at være. Den robotansvarlige lærer fra denne skole, definerer i det følgende, hvad succesfuld undervisning med robotter er for ham:

LÆ: Generelt vil jeg sige, de [eleverne] gik derfra glade, og jeg ved, at på tirsdag når de kommer, så glæder de sig til at bygge videre på det. For nogle der - tankerne kommer til at køre videre om, hvad de nu kan lave mere på. Så det synes jeg da er en undervisning med succes.

Det han indikerer som succeskriterie er altså, at eleverne er motiverede for selve bygge- og programmeringsarbejdet og evt. grubler over problemløsningsmuligheder udenfor timerne også. En anden IT-ansvarlig lærer beskriver skolens vision om at profilere sig på IT-området, og i denne beskrivelse fortæller han endvidere om, hvordan han ser sig som forandringsagent, hvis IT-satsninger intenderes at brede sig til skolens øvrige fag:

LÆ: Det hele udspringer af IT-fagene, vi har besluttet os for, at have alle 5. til 8. klasse til at have én times IT på skemaet fastlagt. Så det er der, det bliver præsenteret, og så kan det så brede sig ud på de andre fag, til de andre lærer-teams, hvis de har brug for mere.

I: Så det [robotbrug] er ikke inkorporeret i for eksempel din engelsk undervisning?

LÆ: Det kan det blive, hvis der er et ønske fra lærerne, eller jo, det er det for mit eget vedkommende selvfølgelig. Jeg prøver selvfølgelig af hele vejen rundt, men min kollegaer skal
ligesom være lidt interesseret i det før. Så skal vi nok være der. Så rykker vi ud med vores robot.

I citatet påpeger den IT-ansvarlige lærer, at de øvrige lærere i efteråret 2015 hverken ønsker eller viser interesse for den udvidede IT og robotinteresse, men at han ser sin rolle som, at han skal være parat til at rykke ud, når eller hvis nogle lærere viser interesse for at inddrage det. Derimod fokuserer han ikke på fagdidaktiske argumenter for, at inddrage robotter i undervisningen. Læreren svarer ikke direkte på, hvorvidt han selv inkluderer robotter i sin fagdidaktiske undervisning. På den ene side siger han, at det kan blive inkluderet, og at det er inkluderet i hans undervisning, men han betegner det som, at han “prøver [robotten] af”. Vi tolker udtalelsen som, at robotten endnu er på forsøgsstadiet, i forhold til den fagfaglige undervisning.

Det kan måske synes indlysende, at det primært er IT-ansvarlige, der driver robotbrugen i skolerne. Det er lærere med en særlig interesse for robotbrug, der driver inddragelsen af robotter frem i skolen, men i flere tilfælde er der tale om lærere, der får ekstra timer til at sætte sig ind i hvordan robotterne fungerer og evt. kan bruges i undervisningen. Ligesom det er lærere, der i flere tilfælde yderligere bruger deres fritid på at sætte sig ind i arbejdet med robotterne. Når disse lærere gør så lidt ud af det fagdidaktiske, kan det skyldes at det er en ekstra tidskrævende proces både at implementere robotbrug i undervisningen rent teknisk og at udvikle det fagdidaktiske. Når der ydermere er et begrænset antal mennesker og timer til rådighed, prioriteres det rent tekniske.

4.2/ Hvad bruges robotterne til?

I det følgende laver vi nedslag i hverdagslivet, som vi møder det på skolerne i efteråret 2015, fremfor at inddrage hvad ledelser og lærere beskriver af tidligere forløb, de har kørt med robotter. Begrundelsen for dette er, at vi primært ønsker at undersøge skolernes hverdagsbetingelser for robotbrug. Derfor indleder vi med en oversigt over, hvilken slags robotbrug projektets forskningsassistenter får mulighed for at observere blandt de seks skoler med normalklasser:

- Forberedelse til First LEGO League blandt en 7. klasses årgang
- Forberedelse til First LEGO League på valgfaget ‘LEGO Masterclass’
- Robotbrug i ’IT-fag’ (én ugentlig time for 5. – 8. klasse) og i valgfaget ‘IT og medier’
- Robotbrug i såkaldte prøvefagstimer, i valgfaget ‘LEGO tech & science’, dele af robottenes anvendes i fysik og kemi og endelig i forberedelse til First LEGO League
Robotbrug i en udskolingslinje, NAO på et valgfag, i projektuger og ved forberedelse til First LEGO League

Når der er så stor overvægt af LEGO Mindstorm fremfor NAO, er det fordi NAO, selv på skoler, der havde anskaffet den, ikke var i brug i den periode vi havde mulighed for at observere. På én skole var det ikke muligt for vores assistent, at få mulighed for at observere robotter i brug i undervisningen, indenfor projektperioden.

Af denne oversigt er det relevant at hæfte sig ved, at assistenterne ikke får mulighed for at observere robotter brugt i den fagfaglige undervisning, for der er ikke noget undervisning af den type, mens vores assistenter laver observationer. Robotterne anvendes i valgfag, en udskolingslinje og i projektuger, bortset fra én enkelt skole, hvor de har oprettet et IT-fag, hvor robotterne også anvendes. Ud over hvad assistenterne har haft mulighed for at observere, har vi også empirisk data på, hvad lærere og enkelte ledelser beretter om, hvordan og til hvad, robotter bruges på skolerne. For eksempel fortæller en robot-ansvarlig lærer følgende:

LÆ: Den [NAO] bliver brugt mest til, at eleverne kan sidde i små hold og programmer den. Og så har det været til, enten at der var nogle, der skulle stå for at lave en quiz, eller der er også bare nogle der! Altså til at starte med har jeg haft den med hjemme i ferier, altså inden jeg fik børn (griner)

I: Ja, det er jo også en dimension af det. Det kræver meget af den lærer der/

LÆ: Ja, det gør det nemlig, hvis du skal kunne mere end bare det overfladiske, for der er flere lag i det. Bare den der kasseprogrammering, for der er kommandøer, du kan give direkte, og så er der også nogle, som bare er forprogrammeret, og så kan den danse. Men hvis du selv skal lave en dans, så er det sådan noget med, at du skal give en kommando, og så skal den gemme den position, for at den kan gå videre. Men ja, man kan bruge rigtig meget tid inden for den enkelte programmering. Så det kræver rigtig meget, hvis du

FIRST LEGO League

Formålet med FIRST LEGO League konkurrencen er: “… at øge interessen blandt unge mennesker for teknologi og naturvidenskab og stimulere nutidens unge til at blive fremtidens ingeniører og forskere.” (FIRST LEGO League u.å.). FIRST Scandinavia, der står bag arrangementet, er en stiftelse, hvis formål er at stimulere 10-16 åriges interesse for naturvidenskab og tekniske/matematiske fag (FIRST Scandinavia, u.å.)

Denne lærer anvender altså NAO til at give eleverne en indledende erfaring med robotter, lære dem at programmere og til at lave anderledes typer af undervisning såsom en quiz. Hun berører endvidere det aspekt, at hun skal bruge meget tid, hvis hun skal have mere styring med undervisningen. Hun beskriver, at hun har taget robotten med hjem i ferier for at få tid til at programmere den, så den kan anvendes i undervisningen. Hun forklarer, at nu hvor hun ikke længere har tid til at bruge sin fritid på at programmere den, vælger hun i stedet, at bruge den mere ustruktureret, så eleverne ‘leger’ sig til at lære at programmere den. Hun antyder videre, at hun ud-distribuerer ansvaret for, at finde ud af hvordan den kan bruges til mere, til eleverne. Sidst men ikke mindst understreger hun, at det kræver meget tid, både for eleverne at lære at programmere den, men også af underviseren, selv hvis denne blot vælger en understøttende position. På en anden skole spørger vi:

I: Hvilke erfaringer har du personligt med at bruge robotter i undervisningen? I hvilke fag for eksempel?

LÆ: Vi har bygget det op på vores skole, så vi har P-fags timer [prøvefagstimer], hvor vi har det her [Mindstorm], men udover det bruger vi det også i - altså nu er det ikke så meget robotter vi bruger - som selve den enhed, som kan laves til robotter. Men i fysik og kemi bliver de brugt som loggere og sådan noget. I selve undervisningen udover det, så bruger vi ikke dem til noget altså, hvis man tænker sådan en ting som skal flytte en ting fra a til b. Det har vi ikke rigtig noget af altså udover det … Selve robotdelen i det, selve det, at designe robotter, det anvender vi kun i de her p-fag. Der er ikke et fag, hvor jeg sådan synes, at det er integreret i. Altså i natur og teknik snakker man selvfølgelig om teknologi, og der kan man også godt komme ud for at se robotter, hvis man har et eller andet emne om teknologi, og måske virksomhedsbesøg, hvor man ser en robot i aktion, men det er ikke noget, vi sådan i hverdagen beskæftiger os med i fagene.
Dette citat understreger, at lærerne har svært ved at give eksempler på, hvordan robotter eksplicit kan indgå i den normale fagdidaktiske undervisning. Det er hovedsagligt noget der eksperimenteres med i valgfag og projektuger og som skal give teknologi-kompetencer – men selv disse er ikke specificeret nærmere. Citatet viser endvidere endnu en gang det skred, der foregår fra robotter, til teknologi generelt set, eller som her til dele af robotter. Som de hidtidige citater i dette kapitel indikerer, ser vi mest Mindstorm brugt, men på én skole får vi lejlighed til at erfare NAO brugt i undervisningen. Vores assistent beskriver følgende om undervisningen:

I denne undervisning bruges NAO til at give elverne erfaring med programmering. Elverne opfordres til at lege sig til programmeringskendskab. Vi spørger nærmere til den IT-ansvarliges oplevelser og formål med at bruge NAO i undervisningen:

I: Hvad oplever du, at du har fået ud af inddragelsen af robotter i undervisningen?
LÆ: Jeg ved, at elever har en ‘aha oplevelse’ til at starte med. Og når de finder ud af, at de faktisk kan, at der stort set ikke er nogen begrænsninger for, hvad de kan få ham til. Nu siger jeg ham, men i hvert fald vores robot så, så begejstres en del af dem over det, at de faktisk har mulighed for at gøre ja stort set, hvad som helst. De kan få prøvet nogle ideer af, de har. Men der er også mange der falder fra efter et stykke tid.

Et formål med at bruge robotter i skolen er i dette perspektiv, at nogle elever begejstres ved at lære at programmere en robot. I dette tilfælde er der tale om et valgfag, så eleverne har selv meldt sig til, men læreren beskriver alligevel, at mange falder fra under forløbet. Det er relevant fordi det er interessant, at det antages at være relevant, at elever i skoletiden lærer at programmere specifikke robotter. Endvidere er det interessant, at det at skabe begejstring spiller så stor en rolle.

I dette afsnit har vi valgt at præsentere den løbende undervisning, der foregår med robotter. De elever der skal deltage i First LEGO League konkurrencen præsenteres i et kommende afsnit.

4.3/ Hvilke robotter bruges til hvad og hvorfor i normalklasser?
Det er overvejende NAO og LEGO Mindstorm vi ser i brug og der er stor forskel på, hvordan de anskues at kunne bruges til forskellige ting. NAO beskrives som bedst til at afspille præfabrikerede programmeringer, mens der fortælles om, at LEGO Mindstorm kan fremme elevsamarbejder men også konkurrence. Det er tydeligt i vores materiale, at det at arbejde med LEGO robotterne appellerer forskelligt til forskellige elever.

På en skole taler vi med den robot-ansvarlige, der er den eneste lærer der anvender skolens robotter i undervisningen. Skolen har både indkøbt NAO og Mindstorm. Hun fortæller, om baggrunden for, at hun anvender NAO i undervisningen:

LÆ: Vi har en ledelse, som rigtig gerne vil have, at det [NAO] bliver brugt... En gang imellem bliver jeg sådan spurt: ’’Hvordan går det egentlig, får du den brugt?’’ Men der er ikke nogen, der ligesom ved, hvad den skal bruges til. Men der er bare heller ikke noget/ - Altså det er ligesom ’find-ud-af-det-selv’-agtigt. Og det kræver bare, at du har en enorm stor interesse, og du synes, du har så meget interesse for det, at du også kan bruge din tid på det. Og så kunne det bare være rigtig fint, hvis man havde noget sparring med nogen, men igen, det er jo også noget, man skal have tid til.

I: Ja, det er klart. Ser du en lysere fremtid, hvis man kan sige det sådan, for LEGO Mindstorm?
LÆ: Det er i hvert fald meget nemmere at gå til. Men nu har jeg jo rimelig meget jak-\nhatten på i forhold til robotter i det hele taget. Det med LEGO Mindstorm er noget, jeg selv har valgt. Hvor det andet/ altså jeg kunne selvfølgelig vælge ikke at bruge NAO, men det var ikke mig, der kom med ideen. Derfor har jeg jo ikke tænkt noget forud for, at den [NAO] blev indkøbt, og det havde jeg jo med LEGO Mindstorm.

Her beskriver læreren dels, at det er ledelsen der eksplicit ønsker at NAO skal anvendes i undervisningen, men endvidere at der ikke følger et formål med brugen med ønsket. Ligesom hun ikke kan få hjælp til, hvordan hun skal gribes det an. Det bliver således lærerens individuelle ansvar, at gøre brugen faglig relevant og at tage sig tid til at få den nødvendige forståelse for NAO’s potentiale. Endvidere er det værd at hæfte sig ved, at denne lærer har initieret køb af LEGO Mindstorm og finder det anderledes nemt at gå til, det kan indikere at det at føle ejerskab, og at have grundlæggende ideer med købet, giver andelede gode forudsætninger og motivation til at bruge ekstra tid på at omsætte ideer til undervisning.

En anden skole har valgt, at elever fra 5. til 8. klasse har en times IT-undervisning på skemaet, som led i skolens ambition om at være frontløber på IT-området. Vores assistent spørger skolens IT-ansvarlige, hvilke robotter der bliver anvendt mest på skolen i efteråret 2015:

LÆ: Det gør Mindstorm helt sikkert. Det er de mest alsidige af dem, og det er de mest anvendelige. De er nemmest tilgængelige. Der er virkelig blevet lavet en god baggrunds bearbejdning, så det er nemt at gå til undervisning på.

I: Så NAO har I lagt lidt på hylden?

LÆ: Altså vi har forsøgt, men den er svær at arbejde med i normalklasser. For der er simpelthen for mange, om at arbejde om den samme robot til, at det giver mening. Altså man kan også meget, den er jo super avanceret. Men ikke helt lige så let tilgængelig som Mindstorm.

Denne lærer beskriver ligesom den forrige, at han har vanskeligt ved at anvende NAO i undervisningen. Hvor den forrige lærer var udfordret pga. det tidsforbrug hun oplever at brug af NAO forudsætter og pga. manglende formål og sparring, beskriver denne lærer sine udfordringer lidt anderledes. Han siger, at den ikke er så lettilgængelig som Mindstorm, men den primære årsag er, at en hel klasse er for mange til at arbejde
med én robot. Igen er disse aspekter efterrationaliseringer. Først anskaffes robotterne, så finder man frem til deres anvendelsesmuligheder og begrænsninger efterfølgende.

4.4/ Programmering

På flere skoler, fremhæver de, at de finder det relevant at elever lærer at programmere. Flere skoler beskriver eksplicit, hvordan de gerne vil stimulere elever til at vælge stem-fagsuddannelser. Det gør de ved at stimulere elevernes muligheder for at lære at programmere:

LE: Vi kan ligeså godt udfordre [eleverne] så tidligt som muligt og hele tiden sørge for, at vi udvikler dem i næste udviklingszone, ikke? Altså, fordi ellers sidder du, nå: "Nu er jeg blevet træt af den der Dash and Dot og sådan, det var det, ik?" Hvorfor ikke, havde jeg nær sagt, fodre dem? … Eleverne i vores klasser er på vidt forskellige niveauer [programmeringsmæssigt]. Nu har vi lige haft det der med WeDo programmering [leveret af LEGO], nogle kommer ret hurtigt videre i programmeringsrådet, hvor andre stadig er på nogle af de allerførste niveauer. Så vi vil hellere snakke om levels i programmering i stedet for klassesetrin.

Her ekspliciterer en skoleledelse, at de ser det som skolens opgave at lære elever at programmere. Antagelsen om at folkeskolen skal lære elever at programmering kommer til udtryk på flere skoler og her antages robotter at være et middel til dette.

LÆ: Jeg tænker faktisk, at det [brug af NAO] er anvendeligt, særligt i vores IT-undervisning fordi, at det er med til at vise, hvad der er derude i fremtiden, og hvad der er af programmerings-muligheder. Men jeg vil godt indrømme, at hvis man tog den med i hjemmekundskab, eller madkundskab hedder det nu, så har du en udfordring i at få det til at passe ind fagligt.

Her knyttes programmeringsegenskaber igen til en forventet fremtids behov, hvorimod læreren sætter de fagfaglige muligheder for robotimplementering på spidsen, ved at betvivle NAO’s potentiale i madkundskabsundervisningen. Udsagnet indikerer en anderledes erfaring end den anden lærers erfaring, at det var for lidt med én NAO til en hel klasse. Her kan de forskellige læreres ansvarsområder, såvel som ideer til- og mål for- undervisningen, have indflydelse på, hvilke muligheder de ser, og det kan relateres til, at mange lærer står alene med idegenereringen. Selvom NAO altså anses for anvendeligt til undervisning i programmering, så er det ikke tænkt sammen med de materielle betingelser for denne undervisning. Flere steder bruger de NAO software, som eleverne lærer at programmere i, sådan at de efterfølgende afprøver og viser deres
arbejde ’live’ på robotten. Men de nærmere didaktiske overvejelser over hvorfor robotter skulle være særligt eksemplariske til at lære programmering på, hører vi sjældent tydeligt udfoldet. Selv om nogle lærere, som i nedenstående citat, gør sig overvejelser over, hvilke typer robotter passer med hvilke skoleaktiviteter, er denne type refleksion en sjældenhed i vores materiale.

Generelt er der en antagelse om at koblingen af programmering og robotbygning giver eleverne noget, men i praksis er det ikke altid tydeligt, hvilke elever der kan have gavn af teknologien og hvem der ikke vil have gavn af den. Selvom denne type undervisning motiverer nogle elever, fortæller flere lærere, at den er for vanskelig for andre, og vi både hører og observerer, at mange elever falder fra i denne undervisning. Da robotterne ikke er anskaffet med et bestemt didaktisk sigte, sker meget af ideudviklingen – for eksempel med henblik på at lære programmering – i praksis.

4.5/ Tid og engagement
En gennemgående udfordring i intentionen om at få robotter ind i den daglige undervisning er den mængde tid, det kræver. Vi hører, at det ofte kommer bag på lærerne hvor tidskrævende det er, at få robotterne til at fungere i undervisningen.

LÆ1: Jeg synes at den [NAO] var helt vildt interessant. Og jeg synes det stadigvæk… Men det kræver bare rigtig lang tid, når man skal sidde og forberede noget og især til de små [klasser], for så er det begrænset hvor meget de kan programmere. Så er det jo ikke de lange programmer og de lange tråde. Så er det jo et eller andet, hvor den står, og vinker, og så er det sådan ikke… Men jeg har været på kursus i den, men lært rigtig meget ved bare at sidde og lege med den selv. Problemet er jo nu, hvor det er, at vi har vores arbejdstidsregler…

I: I synes ikke, I har mulighed for at dykke ned i det og forberede jer?

LÆ1: Nej, nej. Også selvom vi er på kurser og sådan noget. Så er der bare ikke tid nok. LÆ2: Nej, der er et kursus i én eller to timer ikke. Men hvis man så ikke har fingrene nede i det med det samme, så bliver det jo også bare sådan ”Nå”.
De nye teknologier kræver tid for at blive brugbare i en folkeskolekontekst, hvis det ikke bare skal være at fremvise en sjov robot, der kan vinke. Dels tager det tid at lære robotten at kende, men især tager det tid og øvelse at lære at programmere den, som det også er fremgået af citaterne vi har bragt indtil nu. Men det er kun de indledende trin, før robotter kan tages i brug i undervisning.

En skoleledelse eksplicerer deres forventninger til, hvordan nye lærere kommer i gang med at bruge robotter i undervisningen. De indikerer, at deres ambition om at eleverne motiveres og opøver problemløsningskompetencer, ligeledes gælder skolens lærere. De beskriver, at de har som mål at stimulere lærere såvel som elevers teknologinsygerrighed og teknologikompetencer sådan, at de får evner til at lære at bruge teknologi. Ledelsen uddyber denne pointe:

LE1: I går var der en nyansat, som sagde: ”hvordan kan jeg lære det [at bruge NAO i undervisningen]? - Hvem kan lære mig det?” Jam en, så er mit svar, det må du lære selv. For hvordan er det, elever er blevet verdensmestre i NAO eller… Det er simpelthen ved, at bruge en masse tid, og så være nysgerrige på hvad den kan og lege med den. Vi har alle mulige tilgange til det, et firma også. Vi har købt undervisningsprogrammer hjem fra USA hvor de kører meget mere fokuseret på robotteknologi i nogle af deres skoler derovre?

LE2: Men ikke misforstået som, at lærerne selv skal sidde inde i deres eget lille aflukke, fordi det der sker derovre, som fascinerer os, … det er, de her lærere og elever der går op af hinanden og arbejder med vidt forskellige teknologier – de kan gå og skæve til hinanden, så bliver man inspireret … Ja, så det bliver egentlig sådan et læringsfællesskab med en masse læring som på en måde er ukontrollerbart … altning går for langsomt, hvis du sidder i dit eget lille aflukke.

Her gøres det klart, at det ses som en dyd at lærere og elever er selv-motiverede og derfor selv går i gang med at undersøge, hvad robotteknologi kan, og hvordan den kan bruges i undervisning. Dernæst tydeliggør skolelederen, at det er lærernes individuelle ansvar at lære at anvende robotter og den teknologi som skolen har – og at omsætte det til noget, de kan bruge didaktisk. Ansatte såvel som elever forventes at være nysgerrige og bruge tid på at undersøge og lege med robotter, så de individuelt kan finde på, hvordan de kan bruge dem didaktisk. Ledelsen nævner ikke noget om, hvorvidt den nye lærer får timer til det, eller om det går af den normale forberedelsesstid. Det skal nævnes at der også er en masse kurser for lærerne om de enkelte teknologier skolen har, men vi hører ikke eksempler på, at kurser handler om, hvordan robotterne anvendes i den fagfaglige undervisning. Denne leделse eksplicerer denne forventning
til lærerne, men flere af de lærere vi har talt med, oplever ligeledes, at der er store mere eller mindre eksplicit formulerede forventninger til deres investering i robotbrug i undervisning.

Langt hovedparten af de lærere vi taler med er meget motiverede, men vores materiale klargør, at de ofte indledningsvis har forventninger om at robotten selv bidrager med meget mere end tilfældet er. Særligt i forhold til, at den skal bidrage med noget konkret didaktisk.

I: Har NAO kunne mere eller mindre end I har forventet?

LÆ: Jeg vil nok svaare på den her måde. Der ligger større arbejde ved, at han giver en succes undervisningsmæssigt, end vi havde forventet. Der ligger et større arbejde i at få det pædagogisk didaktiske til at give mening, end vi lige havde regnet med.

I: Hvordan udspiller det sig?

LÆ: Jamen det gør det jo ved, når vores tilgang er, at vi leger os frem med det, så er det jo netop fordi, at vi har taget det udgangspunkt. Så har vi ikke taget pædagogik eller didaktik og så fået den til at passe ind. Men vi er jo sat i verden for netop at højne pædagogikken og didaktikken, så på den måde, så kan det være svært at finde ud af, hvornår det er anvendeligt, hvis det er med de briller på.

Det er gennemgående for alle de professionelle brugere vi har talt med, at den største udfordring for ildsjælene er, at få robotbrug til at indgå pædagogisk og didaktisk reflektet, særligt i den fagfaglige undervisning. Som den samme lærer, vi citerer ovenfor, ironisk påpeger, da vores assistent spørger ham, om han oplever, at brugen af robotter i undervisningen ændrer på hans oplevelse af at være professionel lærer:

Denne spøgefulde kommentar, relaterer vi til de øvrige underviseres mere eller mindre eksplicit formulerede udfordringer, der også er bemærket i FREMTEK projektets erfaringer. For som de også omtaler, ser vi også i vores projekt en fare for at manglende tid og fordybelse kan føre til at teknologien blot bliver et show-off uden relevante pædagogiske og didaktiske refleksioner danner baggrund for undervisningen. FREMTEK-folkene opsummerer:
"I forbindelse med anvendelse af ny teknologi i klasserummet er der mange faldgruber, som man skal navigere rundt om. Der vil ofte være problemer med, at teknologien ikke gør, som man regner med. Eleverne kan måske miste interesse, hvis teknologien driller. Derudover skal der også være læringsmål som rækker ud over at lære teknologien at kende, ellers bliver det blot undervisning i en ny "gadget" (Majgaard, Hansen, Bertel, Pagh, 2014)."

Dette teoriCitat underbygger den kompleksitet vi hører fra lærerne på skolerne. Især indledningsvis er der tekniske udfordringer, og i mange tilfælde deles en stor gruppe elever om én robot, hvilket yderligere medfører ventetid i nogle undervisningssituationer. Det aspekt som Nielsen, Pedersen og Majgaard omtaler som læringsmål, anskuer vi lidt bredere som pædagogiske og didaktiske overvejelser, hvilke vi ser, at lærerne står alene med.

Vores undersøgelse viser, at dette også handler om nogle strukturelle forandringer i skolen, der gør det sværere for de motiverede ildsjæle at fordybe sig. Her synes for eksempel skolerformen, der lægger vægt på lærernes tilstedeværelse på skolen, at forhindre at lærere bruger deres fritidsengagement, hvilket ellers har været afgørende. Flere lærere fra forskellige skoler, understreger forskellen på den frivillige interesse, der tidligere drev dem til at bruge ekstra tid på undervisningsforberedelse – og den nuværende situation.

Her er der forskel på, hvordan robotterne er kommet ind i undervisningen. Nogle steder er de indført af skolelederne, og her er der forskel på ledelse og læreres forventninger til, hvad en lærer kan gøre under de givne rammer. I andre tilfælde er de lærere, vi har interviewet, ildsjæle, der selv har valgt at inndrage robotter i deres undervisning – og de forekommer derfor mere villige til at bruge ekstra tid på arbejdet. At teknologien kan drille er ikke noget, der bør slå en lærer ud, udtrykker for eksempel denne ledelse klare forventninger om:

LE: Det vigtigste budskab til vores lærere er: Hvis de tror det er teknologien der er udfordringen… Der er ingen tvivl om, at lærerne en gang i mellem er sådan: "Wow, skal jeg også lære det?" – "Ja, det skal du, det er ikke det, der er udfordringen. Det er didaktikken, min egen lærerrolle og hvordan udvikler jeg mig i tempo så!" - Man må godt nogle gange være svædig i håndfladerne, men man skal jo kunne følge med selv for at være i det her udviklingsflow. Så det er det her med, sammen med os selvfølgelig, at kunne sætte denne her læringskurve.

Her udtrykker en skoleledelse eksplicit, at de anskuer, at det er den individuelle lærers ansvar først og fremmest at anvende det teknologi, der er til rådighed, men endvidere

En lærer svarer for eksempel følgende på spørgsmålet:

I: Er det på eget initiativ, og af egen vilje, hvis man skal engagere sig i det [robotbrug i undervisningen]?

LÆ: Det er mit indtryk generelt, sådan i alle folkeskoler. Nu har jeg jo det her FLL (First LEGO League), der snakker jeg, med de nye vejledere der kommer. De kommer og fortæller mig. ”Jamen jeg har bare fået at vide, at jeg skal tage det fra min forberedelse”. Så det er bare en ret stor sten, at skubbe op af at bjerg, ik’ … Det er også sådan med undervisationsudvikling af robotteknologi i undervisningen. Det kræver. Det er jo ikke bare noget, hvor vi kan knippe i fingrene og så sige, at så kan man ansette en konsulent, som kommer ud, for så er kassen sådan rimelig hurtigt tømt ikke. Altså, det har jeg kunne mærke i hvert fald. Specielt de her FLL vejledere! Man kunne jo også allerede sidste år se på det som holdene kom med, at der i den grad manglede en vejlederstyring på det der FLL. Man er blevet overladt meget til sig selv, og det er jo klart for førhen brugte vi i en periode mange timer. Førhen, da jeg var vejleder på det her, brugte jeg rigtig mange timer, som var interessetimer. Fordi jeg syntes, at det her var fedt. Altså, det gør vi ikke mere i dag fordi, nu er vi blevet opmærksomme på, at du skal være her, på det og det tidsrum.

Vi finder denne udtalelse interessant af flere årsager. Først og fremmest fordi læreren fortæller om lærererfaringer fra flere forskellige skoler, men særligt fordi læreren på tværs af skoler siger, at han oplever, at vejlederstyringen daler, fordi lærerne ikke har den tid og energi, det kræver. Han angiver, at han tidligere brugte rigtig mange interessetimer, før tidsregistreringen tog til. Metaforen om at ’det er en stor sten at skubbe op ad et bjerg’, når lærene forventes at bruge deres almene forberedelse, indikerer, hvordan læreren oplever en opgivende indstilling fra sine kolleger.
Det vil sige, at nogle har fået stillet inddragelse af robotten i undervisningen som en udfordring valgt af en ledelse, hvorimod andre selv har kunnet vælge at inddrage robotter i forløb, hvor de selv oplever det er meningsfyldt. Men selv de sidstnævnte ildsjæle har fået kølnet deres engagement for at arbejde i fritiden med deres interesse efter skolereformen.

Ud fra lærernes egne udtalelser har skolereformen fået konsekvenser for lærere-nes lyst og betingelser for at arbejde med robotter i undervisningen. Både for ildsjæle-ene og for lærere, der er blevet pålagt at bruge robotter, er der en risiko for at investeringerne i de dyre robotter ikke giver det forventede afkast. For eksempel spørger en assistent, en ellers meget positivt stemt og engageret IT-vejleder:

_I: Hvad tror du der kommer til at ske med jeres NAO robot i fremtiden? Hvilken rolle får den?

LÆ: Jeg tror desværre, at den kommer til at betyde mindre. Fordi den er bundet op af… Altså ret hurtigt bliver det både på lærer-siden og elev-siden - et stykke legetøj, for dem som viser særlig interesse for det. Altså udfordringen er at få det bredt ud til alle.

_I: Tænker du lærere eller elever her?

LÆ: Jeg tænker begge dele. Altså, den er bundet meget op på min person, fordi jeg viser en særlig interesse for den, og tager den med.

Her er det dels værd at hæfte sig ved, at selv en positivt stemt ildsjæl har vanskeligt ved at se NAO få en større rolle i skolens fremtidige undervisning. Men ikke mindst er det relevant at bemærke, at han direkte siger, at det vi oplever med, at det er lærere med en særlig interesse, der står for at brede robotbrug ud, ligeledes er noget, han oplever, gælder for eleverne. At det hurtigt bliver et stykke legetøj, for dem som viser en særlig interesse for det. Vi finder dette meget relevant i forhold til de programmeringskompetencer, som nogle af skolerne finder relevante at udbrede til den almene undervisning i folkeskolen. Som IT-vejlederen beretter, og som vi løbende har underbygget i denne rapport, er robotbruget på skolen ofte knyttet til enkelte ildsjæle, men vi oplever også, at det ikke altid er nok. For eksempel spørger en assistent et ressourcecenter, der har indkøbt NAO, men som i efteråret 2015 endnu ikke har fået udlånet op at køre, til hvilke hindringer de oplever:

_I: Hvorfor er jeres udlånt af NAO-robot ikke kommet ordentligt op at køre?

Dette illustrerer, at det i nogle tilfælde ikke kun er de menneskelige ressourcer, der fylder, for robotter er også spundet ind i netværk, der involverer andre teknologier, på måder der ikke har været forudset på forhånd. Og som det fremstår i citatet, er dette en indledende hindring som yderligere er tidskrævende.

4.6/ Robotundervisningen

Selve det at undervise i eller med robotter ser i vores forskning ud til at være en kompleks affære, dels fordi der mangler menneskelige ressourcer til at få teknologien brugt på en måde der er relevant for folkeskoler. De fleste af de steder vores assistenter iagttagt undervisning i efteråret 2015, er der tale om ganske løst arrangeret og ind i mellem meget ustrukturerede forløb. For eksempel fortæller en lærer om sin undervisning:

LÆ: [Når] vi sidder inde i klassen…. Det er sådan lidt, jeg tror godt jeg vil kunne komme til, nærmest at overse et barn i mange timer, fordi det er det kaosagtige, som er ok. Men man ser jo ikke lige, hvis én så sidder og la ver ingenting eller faktisk har åbnet et helt andet program op. For tit synes jeg, man er drevet af, at så sidder der nogen og rækker hånden op. Så går man derhen, og så når man ikke derhen, til dem der ikke har rakt hånden op, og så får man ikke lige set, at for eksempel Oliver er i gang med et helt andet computertprogram eller sidder og fedter rundt på nettet eller…

I nogle tilfælde er der tale om helt bevidste valg (som i ovenstående eksempel), hvor det er den udforskende åbne tilgang, der driver værket, men i andre tilfælde virker det mere som om lærerne ikke er helt klar på de didaktiske mål med undervisningen. En assistent giver for eksempel følgende situationsbeskrivelse af en undervisningssession:

4 Dette sted måtte afvise vores assistent, netop fordi udlånsprojektet endnu ikke var kommet ordentligt i stand.
Derudover der er i lokalet et smartboard, en tavle, et kateder (som er placeret foran smartboardet). De fleste computere i lokalet er udlånscomputer fra skolens bibliotek… Eleverne er blevet bedt om at løse missioner i relation til konkurrencen. Missionerne er konkurrencens delelementer.

Om eleverne i lokalet:
De fleste elever, der er på byggeholdet, er drænge, dog er der også få piger. Eleverne har selv valgt hvilket hold, de ønsker at være på. Bagerst i lokalet er der et mindre tilstødende lokale, hvori der udelukkende et er LEGO League-bord. Dette lokale minder mest af alt om et depotrum. Eleverne har også i frikvarteret arbejdet videre med programmeringen. Generelt er der en lidt uroligstemning og en stemming af, at eleverne ikke er helt med på, hvad og hvordan de skal løse dagens opgaver med robotterne. Det meste af tiden er der kun få af eleverne der er beskæftiget med noget, der relaterer sig til robotterne. En af lærenes argumenterer senere for, at det er smart ”for alle kan jo ikke sidde og programmer på en gang”.

Deltagelsen i First LEGO League kan betegnes som en form for utraditionelt læringsmiljø, der giver nogle andre betingelser end den traditionelle undervisning, så dette forbehold er relevant at tage. Men den ustrukturerede form, der beskrives i dette citat og i det forrige, indikerer, at det ikke er alle børn, der engageres i dette – hvilket læren senere mente frem i disse to beskrivelser. En anden assistent vælger i sine observationer at fokusere på en elevs arbejdsproces, også under forberedelserne til First LEGO League. Det kommende eksempel illustrerer én drengs erfaringer med at problemløse, for at få robotten til at gøre, som han ønsker. Temaet for konkurrencen er ’skrald’. Vores assistent noterer:

Jeg har fulgt en drengs arbejdsproces hele dagen. Han har været meget stille, generelt har der været en stille og afslappet stemning i lokalet, men han har ikke været så interesseret i at svare på mine spørgsmål. Hans forhindring går ud på at vælte et tårn, for så at kunne få fat i det skrald, som det dækker over. Han har arbejdet meget fint i processen ved at bruge ved at prøve og prøve uden at miste lysten eller modet. Hver gang han har gjort et forsøg vælter tårnet, hvilket betyder, at han skal samle det igen ad mange omgange. Jeg kan høre, at han sukker over, at skulle samle det igen ad mange omgange. Jeg spørger, om han kan lide at arbejde med Mindstorm, og han svarer, at det kan han, men det er lidt irriterende at skulle samle tårnet hver gang. Det lykkes ham til sidst at vælte tårnet og få skraldet med tilbage. Han sukker: ”Endelig” og spørger med det samme, hvor mange point det giver. Det giver ret godt, siger lærenen, men han kan ikke huske de præcise tal. De regner ud, at det må give 100 og nogle og 60. Det bliver han glad for at få at vide. De mange for-
søg er givet godt ud. Udbrud som “Ejjj, det var så tæt på!”, "Hvorfor rammer den ikke lige på?!” og “Jeg forstår det ikke!” lyder gennem lokalet flere gange den dag. Der er masser af frustrationer i luften men også masser af gåpåmod.

Denne feltnote illustrerer en undervisningsgang, hvor eleverne arbejder selvstændigt med at lære at programmere og styre deres robot, men her er fokus på en af de elever, som går ind i udfordringen med engagement. På samme skole, fortæller IT-vejlederen, at han kan mærke, at hans elever ændrer og afstemmer forventninger til robotter, efter at have arbejdet med dem. Vores assistent rapporterer:

IT-vejlederen beskriver, hvordan han tydeligt kan mærke forskel på de elever på hans hold, som har arbejdet med WeDo i indskolingen [leveret af LEGO], og dem som ikke har. De lærer noget grundlæggende meget tidligt, som kommer dem til gode, når de skal til at lave nogle sværere ting i udskolingen. Der er også en anden kreativitet, fordi de har gået og fantaseret om det på en anden måde, end dem som først går i gang med det i udskolingen.

Denne erfaring indikerer, at robotundervisning kan være med til at give elever forståelser for robotters potentialer og begrænsninger. Som dette afsnit viser, ser vi store forskelle på deltagelsesgrader og udbytte af undervisningen, afhængig af om vi retter blikket mod de elever robotterne appellerer til, i sig selv, uden den store styring, eller vi retter blikket på de elever, der ikke bliver selvmotiverede i sådanne læringsmiljøer.

4.7/ Hvilke elever appellerer robotter til?

I dette afsnit går vi lidt mere ind i forskellene på elevernes engagement. Vi behandler assistenternes observationer og lærernes beskrivelser af, hvilke elever der har muligheder og begrænsninger i forhold til undervisning med robotter. Først et lille eksempel fra en observation på en skole:

Elevernes køretøjer skal klare forskellige forhinder på tid på en bane, som man får, når man stiller op til First LEGO League. Emnet er i år sortering af affald. Man får point for, hvor godt og hurtigt man klarer hver forhindring. Der er en af forhindringer, som de ikke når at klare, fordi de ikke kan nå det til konkurrencen, siger læreren. Så er det bedre at fokusere på de andre forhindringer og klare dem godt. Der er en konstant gåen frem og tilbage fra computer til banen, da de små finindstillinger, som de programmerer, hele tiden skal afprøves. Finindstillingerne kan være sådan noget som fart og retningsbestemmelse. Programmet ser meget simpelt og lettilgængeligt ud, og det virker som om, at de
har fint styr på de forskellige funktioner i programmet. En gang imellem skal de lige have lidt hjælp, men ellers er de meget selvkørende. De har især brug for hjælp, når de efter flere forsøg for eksempel bare ikke kan få køretøjet til at køre lige eller dreje på det helt rigtige tidspunkt.

En af drengene finder hjælp til programmeringen via FLL's hjemmeside, hvor de ved hjælp af billeder demonstrerer, hvordan programmet skal se ud, hvis de skal kunne klare x antal forhindringer. Han zapper på den måde hele tiden mellem programmeringsprogrammet og hjemmesiden. Lige netop han har svært ved at få køretøjet til at køre, som han gerne vil. Han placerer hele tiden køretøjet skævt i startfeltet, så den ikke rammer den valgte forhindring ordentligt. En af de andre drenger, som virker til at have ret godt styr på det, prøver at hjælpe ham ved at sige, at han bliver nødt til at placere den helt præcist i feltet og på samme sted hver gang, ellers vil det ikke lykkes ham. Det svarer han ikke rigtig på. Efter endnu et forsøg udbryder han: “Det er det her lorte hjul! Det er helt skævt!”, hvorefter han i vrede tager køretøjet op fra banen og begynder at slå på hjulet.

Jeg tænker, at nu går den sikkert i stykker. Læreren opdager ikke noget, og ingen af eleverne virker til at tage det ilde op. Efter at han har fået afløb for sine frustrationer, vender han tilbage til computeren og fortsætter som før. Inden han tør sætte den op på banen igen, prøver han den af på gulvet. Han er tilfreds og går opmuntret op til banen igen, for at gøre sig endnu et forsøg. Da han efter flere forsøg, hvor han også griber ind undervejs og tager fat i køretøjet for at rette op på dens kørebane, selvom det vil give strafpunkt til konkurrencen, stadig ikke lykkedes, råber han efter læreren.

Han forklarer irriteret og opgivende, hvordan hjulet bliver ved med at drille. Læreren siger, at han godt kan se, at hjulet er skævt, og han må få skiftet hjulet, så den kan køre lige igen. Drengen skifter alligevel ikke hjulet og bliver ved med at prøve i håb om, at den snart vil makke ret. Den konstante skuffelse får ham til at gribe hårdt ud efter køretøjet, hive hjulet af og kaste det over i det ene hjørne af lokalet, imens han bander og svølver. Læreren bliver sur og siger på en bestemt måde, at han må styre sig… Der er ikke meget interaktion mellem drengene, da de er meget koncentrerede om deres eget. De kommunikerer mest med læreren, da det er her, de henter hjælp. Det er de samme tre-fire drenger, der står rundt om banen hele dagen. Resten sidder på gulvet og laver lidt hist og her med noget LEGO. Til sidst i timen sætter læreren dem i gang med at lave et skilt ud af LEGO, med deres holdnavn på.

Denne feltnote illustrerer drengens problemløsning og kan ses som et praktisk eksempel på den problemløsning, en anden skole tidligere i rapporten spår, bliver væsentlig for fremtidens arbejdsmarked. Endvidere giver beskrivelsen et indtryk af denne klases arbejdsproces, og assistenten beskriver at det kun er 3-4 elever fra klassen, der målrettet afprøver deres robotter på banen, hvorimod den resterende klasse sidder på...
gulvet og ikke deltager aktivt. Eksemplet illustrerer dels, disse elevers forholdsvis individuelle arbejdsprocesser, og det viser også at det langt fra er alle elever, der tager del i arbejdet.

På en anden skole spørger vi en robotbegejstret IT-ansvarlig til hans erfaringer med, hvilke elever der melder sig til at arbejde med robotter:

I: Kan man beskrive de elever, som finder NAO interessant?

LÆ: Ja det kan man godt. Det er først og fremmest de elever, som søger mit medievalg-
hold. Og det gør de på baggrund af, at de har en særlig interesse for det. Og så er det ele-
er, som ikke er skræmt af en relativt høj læringskurve, men går til det, og har en, hvad
kan man sige er/ altså bider sig fast og ikke giver op på en kodestreng, der er forkert i
DKP for eksempel eller sådan. Det er dem man når længst med.

Denne lærer understreger at robotbrug appellerer til elever som allerede har en interesse for det, og som har interesse og flair for programmering. Han estimerer, at det kun er 5-6 % af skolens elever, der vil kunne bevare interessen for denne type aktivitet.

Andre steder er der mere fokus på, hvor mange af de såkaldt ‘svage’ elever, der vil kunne bruge robotterne til noget. På en af landets førende robotskoler estimerer ledelsen, at 10% af eleverne hverken lykkes i den traditionelle undervisning eller når der arbejdes med robotter. Under alle omstændigheder bruges robotterne ikke systematisk i undervisningen men ofte i forbindelse med særlige tiltag som First LEGO League, projektuger og valgfag.

Som vi har behandlet i kapitlet om begrundelser, fremgår det af flere interviews, at en af de væsentlige begrundelser for at indføre robotter er, at give eleverne succes-
oplevelser - ikke mindst de elever der er bogligt udfordrede. Men vores materiale viser også, at det ikke er nemt at få alle med. Som vist på s. 24 nævner en lærer at eleverne ofte starter ud med en ’aha-oplevelse’ men at mange også falder fra efter et stykke tid. Vores assistent spørger indtil hvorfor det er tilfældet:

LÆ: Det gør de nok fordi, hvis man skal have en kontinuerlig glæde ved at bruge ham, så
har man brug for, at forstå lidt mere om programmering. Og der er der nogen falder fra.

Det er en interessant erfaring, denne lærer udtrykker. For på trods af at en del elever i første omgang begejstres af at arbejde med robotten, giver læreren udtryk for, at mange elever ikke kan fastholde interessen, når nyhedens interesse har lagt sig, og det bli-
er programmeringsarbejde, der skal drive det videre arbejde. Det indikerer, at der er brug for pædagogiske og didaktiske refleksioner over, hvordan robotbrug i undervis-
ningen kan tilrettelægges, for at appellerer bredere til eleverne og stimulere kritisk refleksion.

Selvom hensigten med robotbrug i undervisningen på nogle skoler begrundes med, at det kan involvere de mindre bogligt orienterede og svagere elever beskriver lærerne også, at det ikke er altid det lykkes. En medvirkende årsag kan være den løse undervisningsstruktur, som vi også omtalte ovenfor. En lærer fortæller om dette:

LÆ: Der er jo også en øv-side ved det her, og det er jo netop de børn, som har svært ved nogle ting, som så måske får svært ved det her ovenikøbet. Så har de bare fejlet på flere kanter, og vi kan ikke give dem de her succesoplevelser. Heller ikke med det her… de elever, det kan jo godt give dem nogle voldsomme bump på vejen, under sådan et forløb, hvor det er så frit, som det er. Og i det her med også kun at være én lærer til 28-29 elever. Det er også vældig voldsomt, ikke. Når de får at vide: ”Gør hvad i vil-agtigt.” Så er der brug for hjælp hele tiden. Der er hele tiden nogen, der spørger om et eller andet, eller en gruppe der bliver uvenner eller altså.

Den mindre strukturerede undervisning kan altså, i disse læreres optik gøre, at det for nogle elever bliver svært at få assistance fra læreren, hvilket kan få dem til at opgive på deres læreproces. To lærere fortæller, at de har erfaret, at det i forhold til robotbrug i undervisningen er en forudsætning, at de slipper den totale styring i undervisningssituationen, for at kunne gennemføre denne type undervisning under de præmisser, de oplever, er til stede:

LÆ: Det er ligesom en af de ting som vi har lært igennem de her forløb vi har haft de sidste par år. Hvor vigtigt det er, at man bare kaster noget ud til børnene nogle gange og siger: ”Prøv jer frem. Jeg har ikke løsningen og I ved måske mere end mig” - og det er også blevet legalt på en eller anden måde… det der med at sige… ej, jeg ved ikke hvordan de virker. Vi må finde ud af det sammen.

I: Ja… I har været på kurser og sådan? …

LÆ: Altså meget af det er jo selvlært, kan man sige, ik’?

Den løse struktur, hvormed de vælger at gribe undervisningen an, er i tråd med denne skoles ledelser intentioner om, at eleverne skal lære at problemløse på egen hånd, gennem undervisningen med robotter. Men som de tidligere citater indikerer, så er det kun nogle elever denne type undervisning appellerer til, og flere af vores assistenter
bemærker, at en del elever ikke følger aktivt med i den løst strukturerede undervisning.

4.8/ Den fagfaglige undervisning

Som tidligere omtalt er det gennemgående i vores undersøgelse, at lærerne finder det vanskeligt at inddrage robotbrug i den fagfaglige undervisning, af flere årsager. Vi ser, der er forskellige betingelser, for de lærere der er ansat som IT-repræsentanter, og som har valgt at arbejde med roboerer, samt fået timer til det, og på de lærere som er blevet pålagt at implementere robotter i undervisningen. De lærere, der har fået pålagt at arbejde med robotter, har oplevet det som en udfordring de står alene med, og som de ikke har været klædt på til. En assistent spørger for eksempel en lærer:

{I: Har det været svært nogle gange?}

LÆ: I starten synes jeg, det var rigtig svært. Altså det her med at vi ligesom fik at vide: "Nu skal I … lave nogle undervisningsforløb og det skal være noget med nogle forskellige teknologier." Det var sådan lidt, Ok, hvordan er det lige, at vi tænker det ind? Altså det der med pludselig at lave et eller andet forløb for teknologiens skyld, synes vi var lidt svært til at starte med. Men nu synes jeg efterhånden at nu, hvor vi har været igennem det i 2 år, er vi ligesom kommet ud på den anden side og det har givet rigtig meget i forhold til planlægningen af det, men også det her med, hvordan man bare naturligt tænker nogle teknologier ind i et eller andet. Men jeg synes ikke altid, det har været let, vel. Vi er jo ikke alle vegne enige om det. Det er jo ikke sikkert, at man er enige med sit team om, hvordan det lige skal være.

Det som læreren her beskriver som at lave forløb "for teknologiens skyld", betegner flere af de udfordringer lærerne står i, fordi det indebærer en meget anderledes strukturering af undervisningen, når teknologierne kommer før de folkeskole-relevante formål.

Som vi ser det i efteråret 2015 er det i høj grad skoleledelser og IT-ansvarlige lærere, der køber teknologierne og har visionerne, hvorimod det er de enkelte lærere, der forventes at løfte ophaven med at få omsat robotteknologien til fornuftig didaktik. Det indebærer i vores optik, at det også bliver op til de enkelte lærere at forholde sig til, hvordan roboerer influerer på didaktik og omformer undervisningspraksisser.
Selvom lærerne overordnet set er positive i forhold til at have robotter på skolen og bruge dem i undervisningen, er de udfordrede mht. at relatere dem til faglige aspekter. Det baserer vi på svar som dette:

I: Hvordan oplever du processen med at gøre undervisningen med robotter faglig og didaktisk meningsfuld?

Som dette citat også indikerer, så kan flere se et vist potentiale for robotbrug i den faglige undervisning, men de fortæller også, at det indtil nu har været svært for dem at omsætte til praksis. Robotterne sætter gang i fagfaglige overvejelser, og når det virker relevant kan robotterne anspore til kreative nytænkninger, selvom det ikke altid er tydeligt, hvordan det hænger sammen med de fagfaglige problemstillinger.

LÆ: Vi har jo nogle undervisningsforløb, nu her har vi jo lige haft denne her projektuge… og ellers bliver det sådan hevet ind i perioder alligevel, selvom det ikke er del af et projekt. Så passer det måske lige ind med et projekt man har, og så får det os til, at se på emnet på en anden måde. En genre i dansk for eksempel, hvor vi skal have om eventyr, jamen så bygger vi et eller andet ud af det her LEGO. Hvad [som helst]; skriv et eventyr ud fra det. Byg dragen, eller det kunne være hvad som helst.

Ud fra denne lærers beskrivelse, er det dog svært for os at vurdere, hvorvidt det er roboptdelen af LEGO Mindstorm, der sættes i spil i denne type forløb, eller om det udelukkende er LEGO klodserne der bruges for at få kropslighed med i læreprocesserne. Det der bliver tydeligt, i dette eksempel er, at LEGO’et bruges til at facilitere anderledes læreprocesser, end hvad de normalt arbejder med i danskundervisningen. På et spørgsmål om hvordan robotter kan bruges fagfagligt ender to lærere med at konklu-
dere på nogle generelle parametre, der ikke er koblet til fagfaglighed men mere gene-
relle it kompetencer:

LÆ2: Jeg tror da på at de [eleverne] har en bedre 'rygsæk'.

LÆ1: Ja, og de har lige præcis den der rygsæk, til hvor nu skal vi arbejde med/ så kommer
de ”Må vi godt bruge det her, til at arbejde med det?” Ja, altså hvor man tænker, janen
så tager vi lige Minecraft ind og bruger til noget matematik. Eller så tager vi lige det her
LEGO ind og bruger til reklamer eller hvad det nu er. Et eller andet hvor man tænker,
”Ok, det sidder I på og tænker”. Det er ikke mig, der siger, de skal bruge denne her model,

I: Har du nogen eksempler på det?

LÆ1: Nej, men vi havde eller andet, hvor der kom én, og spurgede om de ikke nok måtte…
Det var et eller andet program på iPad'en, de kom med, og spurgede: ”Ej, må vi ikke godt
bruge det her, til at løse denne her opgave” - hvor jeg tænkte: ”Jo, det må I da gerne.”
Altså, det havde jeg ikke selv lige tænkt. De har bare den der værktøjsrygsæk, som bare er
stor, hvor før havde vi sådan et IT-kørekort… vi ligesom skulle igennem.

Denne dialog indikerer, at lærerne anskuer robotbrug i undervisningen som ét aspekt
blandt flere i udvikling af mere generelle IT-færdigheder, hvorved eleverne lærer at
medtænke forskellige teknologier i deres problemløsning. Eksemplet bekræfter endvi-
dere, en pointe vi har fremført tidligere, at der, i tale om robotter i undervisningen,
umærkeligt sker verbale skred over i anden teknologi som for eksempel computerspil
og programmer til tablets.

I forhold til robotternes anvendelse i praksis viser det sig, at underviserne på alle
de skoler vi har været ude på i efteråret 2015 er udfordrede i forhold til at anvende
robotter på en måde, der eksplicit er meningsfuld i relation til den fagfaglige undervis-
ing. Også i forhold til de naturvidenskabelige fag, der ofte nævnes som relevante i
forhold til robotteknologi. Vi hører ikke, at skoleledelserne har særligt fokus på fagdi-
daktiske overvejelser og det store arbejde, der ligger i at gøre robotten relevant for,
eksempel for, engelskundervisning gennem møjsommelig programmering.

4.9/ Køn
Vi vælger at inddrage køn som parameter i denne rapport fordi regeringen har som
mål, at bryde med det kønsopdelte uddannelsesvalg for at skabe et uddannelsesvalg
baseret på kompetencer snarere end på “kønsstereotype forventninger” (Dansk formandsskab for Nordisk Ministerråd, 2015). I forhold til denne ambition er det interessant at være opmærksom på, hvordan der arbejdes med robotter i skolerne, i relation til hvorledes undervisningen appellerer kønsrelateret til eleverne.

I forhold til undervisersiden møder vores assistenter én kvindelig robotansvarlig lærer, ud af de skoler vi besøger hvor robotbrug er frivilligt for lærerne. På én af skolerne er det obligatorisk for alle lærere, at anvende robotter i undervisningen og her interviewer vores assistent to kvindelige lærere. De øvrige lærere, vi har mødt, der har med undervisning af robotter at gøre, er mandlige.

På den skole hvor en hel årgangs elever forbereder sig på at deltage i First LEGO League i efteråret 2015, vælger de, at opdele eleverne i tre hold:

- Robotbyggergruppe, der står for at bygge og programmere robotterne
- Forskergruppe, der står for at lave en rapport med baggrundsviden
- Designgruppe, der i samarbejde med forskergruppen udarbejder produktideer og laver merchandise til holdet.

Vores assistent hæfter sig ved, at pigerne overvejende vælger design og forskerdelen, mens drengene overvejende melder sig som robotbyggere. Assistenten observerer, at der er to til fire piger i robotbyggergruppen, ud af nogle og tyve elever. Ligeledes bemærker assistenten, at det er mandlige lærere, der understøtter robotbyggergruppen, hvorimod en kvindelig lærer understøtter designgruppen. Et lignende kønsrelateret mønster beskrives af skoleledelsen på en anden skole:

Så vidt vores assistent har kunnet observere på denne skole, indebærer forskningsdelen her arbejdet med både at designe og udforske et emne. Forskergruppen laver bl.a. tegninger og prototyper og appellerer altså primært til pigerne, hvorimod det overvejende er drengene der melder sig til programmeringsarbejdet. Som udsagnet indikerer, er ledelsen altså opmærksom på, at der er kønsrelaterede forhold, der gør sig gældende
omkring programmering, og de vælger aktivt at forvente, at pigerne tager del i pro-
grammeringen af robotter i de projektuger, hvor de er i brug.

På en tredje skole der har valgfag om LEGO robotter, deltager kun drenge, da
vores assistent observerer. Assistenten får at vide, at der har været en gruppe piger
med i valgfaget, men at de er faldet fra. På denne skole interviewer vi fire piger, og
assistenten opsummerer her deres perspektiver på dette:

Tre ud af de fire piger [der interviewes på skolen] synes, at det er kedeligt og svært at
programmere robotterne, de kan bedre lige ”at lave kreative ting”, som de siger. Her tæn-
ker jeg, at det er meget kreativt at programmere… De gentager alle tre, at de bedst kan lide
at lave kreative ting, hvilket støtter den fj erde piges ærgrelse over, at der ikke er flere
piger, som synes, at programmering er sjov. De vælger efter, hvad deres veninder gør.

Dette er interessant, da det indikerer, at der er en udfordring i forhold til at gøre robot-
brug i undervisningen appellerende for flere piger. Det er interessant, at assistenten
noterer, at den pig, der synes, at det er sjov at programmere, fravælger det, for at være
sammen med veninderne. For det indikerer, at et socialt aspekt også spiller ind i for-
hold til, hvad eleverne vælger frivillige aktiviteter på baggrund af.

På en fjerde skole antydes endvidere et kønsrelateret aspekt ved robotbrug. Her
beskriver en assistent sine observationer i sammenkobling med den viden, han har fået
i et elevinterview:

Eleverne synes at elske inddragelsen af robotterne. Her er de meget fascinerede af
programmerings- og designdelen:

Dreng 1: ”Jeg kan godt finde ud af at programmere det og sådan noget… Det er meget
sjov.

Pige: ”Jeg er ikke så god til at programmere. Jeg er ikke så god til sprog. Jeg er bare mere
til design. Jeg er god til at designe robotten.”.

Dreng 2: ”Jeg er også meget god til at programmere den. Altså på computeren. Noget
spaceteknologi. Så har jeg også lidt erfaring derhjemme fra, for jeg har sådan en robot
derhjemme.”

For eleverne synes graden af succesoplevelser at være knyttet til deres motivation. Det
handler altså til en vis grad om, hvad de oplever at de er gode til. På den baggrund
c kunne et relevant spørgsmål være, om der er noget ved incitamentsstrukturen ved ro-
botprogrammering, der ikke formår at appellere til piger.
På den skole, hvor hele 7. klasses årgangen skal deltage i LEGO League, fortæller vores assistent følgende om kønsfordelingen:

I byggelokalet er der en mandelig lærer tilknyttet. Læreren hjælper eleverne med at programmere og bygge robotterne. Eleverne er blevet bedt om at løse missioner i relation til konkurrencen. Missionerne er konkurrencens delelementer. De fleste elever, der er på byggeholdet, er drenge, dog er der også få piger. Eleverne har selv valgt, hvilket hold de ønsker at være på…

Dette underbygger, at mange af vores assistenter bemærker en kønsopdeling i projekt-arbejde med robotter, hvilket tyder på, at der er en mere generel udfordring med at engagere en bredere elevgruppe i undervisningen med robotter, særligt piger. Én skoleledelse arbejder målrettet for at opnå deltagelse fra piger, og elementer i vores materiale antyder, at der kan være sociale aspekter, der spiller ind. Det kan ligeledes relateres til pigernes oplevelse af, hvad deres styrker er. I den forbindelse ser vi det som en presserende udfordring, at tilrettelægge undervisningen med robotter på en måde, så den appellerer til flere end de (primært drenge), der allerede er interesserede i emnet.

4.10/ Konkurrence og samarbejde

Som tidligere beskrevet erfarer vi, at undervisningen med robotter er meget løst struktureret, det vi også ser, er, at lærere i flere tilfælde introducerer et konkurrenceelement i undervisningen med robotter. En skoleledelse indikerer, at de direkte opfordrer lærere til at anvende konkurrence:

LE: Altså, noget unge tænder på, som har været forbudt, er konkurrence. Men er der noget, vi alle sammen tænder på, også piger, så er det konkurrencer og at præstere. Så vi kan rigtig godt lide, at de lærer at præstere under pres. Fordi, der er pres med tidsfrister
og nogle indleveringsfrister og så hele det der med: "Dur min programmering nu, hvor jeg skal ud og få den der robot til at gøre de opgaver".

Denne ledelse beskriver, at de motiverer elever ved at anvende konkurrenceelementet. Når ledelsen tilføjer ”også piger” kan det relateres til at flere lærere beskriver vanskeligheder med at motivere piger til at programmere. Det kan anskues som, at de antager at konkurrence er et godt læringsmotiv. Ledelsen implementerer også et andet mål her, nemlig at elever lærer at præstere under pres og dette trænes gennem at konkurrere på programmeringselementet.

Et eksempel på hvordan visse robotter fremmer konkurrenceelementer findes på de skoler, hvor klasser skal deltage i First LEGO League konkurrencer. I en undervisningstid for en 5. klasse med LEGO Mindstorm har eleverne for eksempel bygget en robot, som de har programmeret til at køre i bestemte vinkler og antal cm efter streger, der er optegnet på et bord. Opgaven går ud på at robotten skal køre tæt på en LEGO-mand, uden at røre eller vælte den. Eleverne programmerer, tester og retter til. Vores assistent rapporterer:

Denne situationsbeskrivelse giver et godt indtryk af, hvordan én lærer anvender konkurrence som et motiverende og samlende element i klassen. Vores assistent oplever, at det er et tydeligt legeelement i sessionen. I et efterfølgende interview forklarer en af skolens lærere:

LÆ: Man ser meget godt, det her med, at man [med robotbrug i undervisningen] giver en god indgangsvinkel til for eksempel at snakke om sådan nogle almendannelses ting som samarbejde. Altså, hvis det her skal lykkedes for os, så bliver vi nødt til at arbejde sammen. Vi bliver nødt til at finde ud af, at jeg har nogle styrker, du har nogle styrker, jeg har nogle svagheder, du har nogle andre svagheder. Så må vi få det bedste ud af det.

Denne lærer argumenterer altså for, at han kan arbejde med almendannelse ved at fokusere på samarbejdsøvelser i forhold til problemløsning i konkurrencesituationen. På en anden skole, der også er med i First LEGO League konkurrencen, skal hele 7. klassess årgangen deltage. Så i tre uger af efteråret går meget af undervisningen med forberedelse til konkurrencen:

Undervisningen er også i denne beskrivelse meget løst struktureret, og styret af hvad robotterne lægger op til. Som vi har vist gennem rapporten er undervisningen med robotter ofte kun meget lidt voksenstyret, i stedet er den ofte konkurrencepræget, på trods af at det kun er få lærere der italesætter dette som et eksplicit formål. Det lader til at et underliggende rationale bliver, at når eleverne lærer at betjene visse typer robotter som LEGO Mindstorm, virker det naturligt, at de også deltager i First LEGO League. Vi ser ikke dette konkurrenceelement udlevet på samme måde med NAO robotterne.
5.0 Sammenfatning og konklusion

5.1/ Sammenfatning
Mini-projektet RIF udforsker forholdet mellem begrundelser for robotteknologi i skolen og robotteknologiernes faktiske anvendelser. I det følgende vil vi først sammenfatte denne del af hovedrapportens afdækning af begrundelser baseret på forestillinger om robotteknologi og herefter diskutere, projektets indblik i hvad der de facto udspiller sig i skolernes hverdagsliv. Til slut vil vi perspektivere med nogle overvejelser over forskningens rolle på feltet teknologi i folkeskolen - med særligt henblik på robotteknologi.

Nedenstående lister vi nogle af de mest generelle, eksplicitte begrundelser for at anskaffe robotter som det træder frem i vores materiale i denne del af hovedrapporten.

- For at motivere særligt ikke-boglige elever, gennem anderledes læringsmiljøer.
- For at begejstre elever og skabe indre styret motivation til at problemløse.
- For at forberede eleverne til en forventet teknologisk fremtid.
- For at elever kan lære at programmere og få teknologiske kompetencer.
- For at stimulere elever til at vælge tekniske og naturvidenskabelige uddannelser.
- For at tilpasse elever til arbejdsmarkedets behov.
- For at skolen kan brande sig som teknologisk first-mover.

Når der indføres robotter i undervisningen i folkeskolen er der således samlet set tale om: 1. forestillinger om robotter som innovation, 2. forestillinger om robotter på fremtidens arbejdsmarked, herunder behovet for at kunne programmere dem og 3. forestillinger om at robotteknologi vil kunne motivere forskellige typer elever på nye måder for eksempel pigerne og ‘gøre’ elever, 4. forestillinger om at robotter kan forbedre fagfaglig indlæring især i naturvidenskab (men som vi så i tilfældet med robotten som engelsklærer, gælder det også andre fagfagligheder).

Når vi sammenholder disse begrundelser med det vi finder præger hverdagslivet med robotter i folkeskolen, peger materialet på en række komplekse forhold, der viser at undervisning med robotteknologi endnu ikke er tilstrækkeligt didaktisk forankret.

5.2/ Innovation
Flere skoler begrunder anskaffelser med et ønske om at markere sig som teknologisk first-mover, hvilket er sammenfaldende med konklusioner i Technucation projektet (Hasse og Brok 2015). Sammenfattende kan vi på baggrund af dette mindre nedslag i 2015 konstatere, at robotter bliver købt som innovative og progressive, men forventes ofte at kunne mere ‘selv’ end tilfældet er. Dette kan til dels skyldes den nære kobling
mellem udviklere og distributører, skoleledelser og skolernes ildsjæle. Hverken ledels
ser eller skolens lærere generelt har selv førstehåndserfaringer med robotterne og de
overraskes derfor ofte over, hvor lidt robotterne selv er i stand til. Det er helt gennem-
gående i materialet, at robotteknologi er drevet af enkeltpersoner på skolerne og at
disse enkeltpersoner ofte også er de IT-ansvarlige eller har særlige IT-kompetencer. Det
er ligeledes gennemgående at på trods af flere skoleledelserens ønsker om at udbrede
disse kompetencer til alle på skolen, forbliver det ildsjælæne, der tager sig af anvendel-
sen af robotter på skolen.

5.3/ Fremtid
Lærere og ledelser i denne undersøgelse ser robotter som en væsentlig del af elevernes
fremtid, og derfor begrundes anskaffelsen eller lån af robotter også med henvisning til
e en fremtid, hvor erfaring med robotteknologi er essentiel. Denne antagelse støttes af
forskningen i robotteknologiens fremtid (fx Frey og Osborne 2013) men følges generelt
ikke op af fagdidaktiske overvejelser over, hvordan det at arbejde med robotter i folke-
skolen kan forberede elever på denne fremtid. På trods af behovet for at forberede bør-
nene på en 'robotificeret' og automatiseret fremtid på arbejdsmarkedet, er det op til de
enkelte lærere at forbinde det at lege med programmering og robotbygning med disse
overordnede perspektiver. Selv om det er sat i system på en enkelt skole, er det langt
fra på alle skoler, vi finder disse overordnede generelle perspektiver udfoldet - og selv
på den skole, der er længst fremme, virker det som om de enkelte lærere mangler fag-
didaktisk materiale til at indholdsmuligføre disse perspektiver.

5.4/ Motivation
Det er et helt gennemgående træk at der er et kønsaspekt ved robotteknologi i folke-
skolen. Langt den overvejende del af de IT-faglige lærere er mænd - og på trods af fo-
restillinger om at robotter kan få flere piger til at interessere sig for teknologi, fremtræ-
derer der et tydeligt mønster af at selve programmeringen og bygning af robotter til-
trækker drenge mere end piger. Når drenge og piger får mulighed for at vælge, ser vi i
vores materiale, at så vælger piger at arbejde med design fremfor det konkrete arbejde
med teknologien.

Ambitionen om at styrke elevernes teknologinysgerrighed synes derfor kun at
indfries for en mindre del af eleverne i normalklasserne. Muligvis fordi den ofte noget
ustrukturerede tilrettelæggelse af undervisningen, lejlighedsvis er koblet med en
uklarhed omkring formålet. Programmering og robotbrug i undervisningen får ikke i
særlig grad fat i pigerne ifølge vores materiale, og det tyder på, at man nok skal gen-
tænke de didaktiske overvejelser over, hvordan robotter og programmering også kan appellere til piger.

På skolerne med normalklasser anskaffes robotter ofte for at få nye sider frem hos eleverne – og dette lykkes til dels, men de har også andre, ofte uerkendte effekter, såsom at fremme konkurrencementalitet, afhængigt af robotternes udformning og den salgsdynamik den er omgivet af. Robotterne anvendes i normalklasserne i høj grad til at motivere elever og konkurrenceelementet anses generelt for at være en yderligere motiverende faktor. Vi har ikke kunnet se af vores materiale, at dette konkurrenceelement kobles med fagdidaktiske overvejelser for læring af specifikke faglige mål. Til gengæld anses robotteknologi og konkurrence for at kunne fremme en generel teknologinygerrighed. Vi finder en opmærksomhed på skolernes bogligt udfordrede elever, der med robotterne kan opøves i helt nye tekniske færdigheder gennem hands-on aktiviteter. Kompetencemål, der ikke er knyttet til fagdidaktikken, men som kan motivere og begejstre ellers bogligt udfordrede elever.

Et aspekt der fremgår af vores materiale fra normalklasserne er, at selvom robotter vækker umiddelbar begejstring hos mange elever, kræver det noget ekstra at få flertallet af eleverne til at bevare interessen for robotundervisning. Hvor det fungerer, får man fat i nogle af de såkaldte ‘gøre-elever’, men det kræver meget af lærerne at gøre det på en måde, der giver læringsmæssigt udbytte. Det kræver desuden overvejelser over, hvilken læring man ønsker at fremme med robotteknologi.

5.5/ Fagdidaktiske overvejelser
Skolerne med normalklasser investerer ikke altid i robotter med en klart tilrettelagt didaktisk dagsorden, der efterfølgende udføres i praksis. Alligevel forventes det flere steder at læere, ud over ildsjælene, skal kunne bruge robotter i deres fagfaglige undervisning.

Der hvor robotterne kobles med flest didaktiske overvejelser i en læringskontekst er i forhold til at lære programmering. Men her virker det som om, der mangler teknologisk fagdidaktisk forskningsinput til at belyse om, og i givet fald hvorfor, robotter er den bedste måde at lære programmering på. Der synes dog også at være forskellige opfattelser af om børnene overhovedet skal bruge tid på at lære at programmere eller bygge robotter. Spørgsmålet er, om det at bruge robotter giver andre muligheder end at lære programmering alene på en computerskærm - og om alle børn bør lære dette?

Det er som nævnt markant i vores lille undersøgelse, at undervisning med robotter ofte er båret oppe af enkeltpersoner. Det vil sige, det ofte er ganske få ildsjæle, i form af skoleledelser og enkelt lærere med IT-baggrund, der står for at inddrage robot-
ter i undervisningen. I denne undersøgelse er det de færrest, der (som i FREMTEK projektet) af sig selv formår at koble roblitter med fagdidaktik, og det fagdidaktiske aspekt fremhæves ikke, når roblitter bliver anskaffet (heller ikke altid når der er tale om programmeringsdidaktik). Det virker snarere som om nogle af disse ildsjæle, uafhængigt af fagmål, ønsker at sætte en ny teknologidrevet dagsorden.

Det er interessant, at samtlige lærere i denne undersøgelse alligevel udtrykker forhåbninger om, at inddrage roblitter i den fagfaglig undervisning, som engelsk og matematik, men der gøres ingen konkrete forsøg på at overvinde de teknologiske forhindringer og inddrage og støtte de almindelige lærere i at anvende roblitter på en måde der eksplicit er meningsfuld i relation til den fagfaglige undervisning.

Undervisningen med roblitter foregår primært i projektuger og på valgfag og den er ofte meget løst struktureret. Denne undervisning er på begynderstadiet og derfor bliver det de enkelte læreres individuelle ansvar at implementere roblitterne på en måde, der er relevant. Det er en stor og tidsforbrugende udfordring. Flere strukturelle og organisatoriske ændringer mangler stadig for at integration af roblitter i almenundervisningen bliver anvendelig og lærerne efterlyser hjælp og sparring til at udvikle og inddrage roblitterne på meningsfulde måder. Ildsjælene får én tid af ledelserne til dette arbejde, og har også tidligere brugt tid herhjemme på at få robotteknologien til at virke. Når de almindelige lærere generelt afstår fra at bruge robotteknologi kan det skyldes, at de opdager at de skal bruge uventet meget tid på at få roblitterne ind i undervisningen.

Mange lærere understreger at det tidskrævende arbejde med at forbinde fagdidaktik med en ny teknologi som roblitter kræver et engagement, der ikke understøttes af den nuværende struktur efter folkeskolereformen. En lærer på en almenskole formulerer det således:

LÆ: Hvis man skal inddrage blandt andet roblitter [i undervisningen] til børn og unge i dag, så skal det være fordi, at det er let tilgængeligt. Fordi tiden er der simpelthen ikke, til at gå i fordybelses mode. Altså hverken for lærerne eller for eleverne. Fordi pensum er så skrapt, som det er, og det er jo andre ting end denne her ”Aha, lad os prøve at se, hvad der sker ved det her”. Det er væk fra skolen i dag. Det er meget målstyret det hele. Og der skal man nok leve op til de mål, så hvis der skal være en mulighed for at inddrage roblitter i dag, så skal det være nemt. Altså det skal være nemt tilgængeligt, noget som hurtigt er en gevinst.

Den præmis som læreren her udtrykker, er en stor udfordring, for vi finder ikke nogen lærere, der finder det let tilgængeligt at gøre robotbrug relevant for undervisningen.
Dette kan i vores nedslag til dels kobles til folkeskolereformen, der har haft den effekt at dæmpe ønsket om at bruge tid udenfor skolen på at sætte sig ind i nye ting - hvilket endog influerer ildsjælenes engagement.

Vi kan se, at robotternes udformninger influerer på de fagdidaktiske muligheder for brug, men at der sjældent gøres didaktiske overvejelser over valg af robottype. LEGO Mindstorm (kombineret med konkurrencen First LEGO League) tilskynder til at anvende et konkurrenceelement i undervisningen. NAO anvendes, i vores nedslag, ikke på samme måde til konkurrence, selvom det af Teknologisk Instituts hjemmeside fremgår at NAO også anvendes i konkurrencesammenhæng. Konkurrenceelementer begrundes som nævnt med at det motiverer elever men ikke om dette er den mest hensigtsmæssige motivationsfremmer i forhold til, hvad der skal læres.

En anden forskel der fremgår af vores materiale er, at lærere og ledelser udtrykker forhåbninger om, at NAO kan blive relevant for fagfaglige fag, såsom engelskundervisning; denne forhåbning udtrykkes derimod ikke i relation til LEGO Mindstorm, men begge robottyper nævnes som relevante for naturfag uden at det specificeres fagdidaktisk.

5.6/ Forskning

I betragtning af den indflydelse robotterne antages at få på elevers fremtidige arbejdsliv, virker det yderst relevant at eksperimenterere med undervisning, og mange lærere og ledelser gør et stort arbejde med at leve op til de Forenklede Fælles Mål (FFM), der er formuleret af politikerne. For disse læringsmål gælder, at IT og medier er et tværgående emne som (sammen med sproglig udvikling og innovation og entreprenørskab) skal integreres på tværs af alle fag. Det fremhæves af ministeriet at FFM bygger på international forskning, der viser, at arbejdet med mål, evaluering og feedback har stor betydning for elevernes læring. Dette synes ikke at være et mål, der er opnået for det tværgående område IT og medier, når det gælder robotter i undervisningen. Igennem studier af folkeskolens komplekse hverdagsliv kan vi få et indblik i, hvorledes robotteknologi vanskeligt lader sig forene med de øvrige faglige læringsmål.

I denne mini-undersøgelse ønsker vi ikke at drage vidtgående konklusioner, men da der er så få universitetsbaserede undersøgelser, der studerer skolernes hverdagsliv, vil vi alligevel pege på, hvor RIF rejser nogle nye spørgsmål, der kunne udforskes gennem mere forskning. Det fremtræder ganske klart i vores materiale, hvorledes robotteknologi engagerer skolens lærere meget forskelligt og at skolens ildsjæle spiller en særlig rolle, hvis betydning ikke udbredes til hele skolen. Det spørgsmål, der rejser sig er om dette kun gælder indenfor dette specifike område af det tværgående område IT og medier, eller om det vi finder i RIF er en mere generel tendens?
Er det sådan at IT og medier er vanskeligt at integrere med de fagdidaktiske områder, da dette område er tidskrævende og varetages af ildsæle?

Er der en markant kønsskævhed på dette område og ville undervisningens tilrettelæggelse og elevgruppens engagement blive forandret, hvis flere kvindelige lærere meldte sig som teknologiinteresserede ildsæle?

Uagtet at flere robotaktører og skolernes ildsæle virker meget optagede af forskningen på feltet, ser vi det umiddelbart som en mangel, at der sjældent indgår forskere i sammenspillet mellem skolerne og robotaktørerne. Den danske forskning på området udvikler interessante designdidaktiske planlægningsmodeller (Hansen 2015, Majgaard et al. 2014 og Nielsen et al. 2015), som vores empiriske forskning peger på yderst vanskeligt lader sig implementere. Med udgangspunkt i den hverdagspraksis vi observerede både her i denne mini-undersøgelse og i Technucation-projektet finder vi, at arbejdet med teknologier generelt og robotteknologi specielt er utroligt kompliceret at forankre i undervisningen. Det skyldes muligvis at denne udvikling er teknologidrevet fremfor drevet af fagfaglige hensyn. Og vi finder det derfor relevant at spørge:

hvordan kan vi sikre at fremtidens brug af robotteknologi i folkeskolen ikke er styret af kommercielle og teknologiske interesser men beror på forskningsbaseret videns om fagdidaktiske, lærings aspekter ved brug af robotter i undervisning?

På det fagdidaktiske område er det mindre tydeligt hvilken international forskning man kan trække på. Det kræver langt større ressourcer, end vi har kunnet mobilisere i dette mini-projekt, at udfolde forskningens potentialer – men det spørgsmål, der rejser sig er:

Ville Danmark kunne høste forskningsmæssige fordele ved at satse på forskning i robotter i folkeskolen?

Vi vil fremhæve FREMTEK som et glimrende eksempel på et godt samarbejde mellem robotkyndige, lærere og fagdidaktikere - men der mangler fortsat forskningsbaseret viden om skolernes hverdagsliv og det realistiske i de robotprojekter, der foreslås og deres faktiske effekter. Når FREMTEK fremhæver, at teknologi bør have ”tilknytning til et didaktisk design” (Majgaard, Hansen, Bertel, & Pagh, 2014, s. 12) kan vi konstaterre, at denne tilknytning ofte er fraværende i vores materiale.

Igen rejser sig en række grundspørgsmål her:
Hvorledes kan og skal robotteknologi kobles med fagdidaktik på måder, der støtter op om fagdidaktikken og skolens lærergrupper generelt?

Er det konkurrenceelement der kommer ind i klassen med robotter det bedste fagdidaktiske virkemiddel?

Skal programmering have sit eget fag, og er robotter den bedste måde at lære at programmere på?

Skal programmering opfattes på linje med et sprogfag eller integreres i alle fag – og hvilke udfordringer ville det give for de af skolens lærere, der ikke er ildsjæle?

Mange lærere og ledelser antager at robotter og/eller elever i sig selv kan håndtere læring af ny teknologi - men der mangler forskning i om dette rent faktisk er tilfældet. Det forekommer umiddelbart naive at forestille sig at elever eller robotter selv kan værte den svære kobling mellem fagdidaktik og teknik.

At robotter kan virke motiverende på elever forbindes ikke altid med spørgsmålet 'motiverende i forhold til hvad?'. Der mangler indblik i fagdidaktisk forskning, der vil kunne vise om robotteknologi er specielt velegnet til naturvidenskabelig fagdidaktik eller også bør finde anvendelse i andre sammenhænge. Der mangler endvidere forskningsviden om, hvorfor robotakterer og ildsjælene spiller den rolle de gør, og hvorfor deres teknologikendskab ikke udbredes i højere grad til resten af lærergruppen. Ved at belyse disse spørgsmål ville man muligvis kunne fremme et tættere samarbejde mellem forskere, robotakterer og ildsjæle, der kunne forene fagfaglige og tekniske diskussionerne i hele lærerkollegiet.

Vores undersøgelse er et lille nedslag i skolernes hverdagsliv. Det er ikke et skoleudviklingsprojekt, der, som eksempelvis FREMTEK-projektet, har til hensigt at udvikle ny didaktik. Undersøgelsen begrænser sig til udvalgte robotter, og indenfor rammerne af dette projekt har det ikke været muligt at besvare de forskningsspørgsmål vi rejser her. Alligevel antager vi, at vores fund har en bredere relevans, da de peger på et misforhold i samspillet mellem forestillinger og den faktiske teknologianvendelse i folkeskolen.

Helt overordnet svarer vores resultater i Robotter i Folkeskolen (RIF) til vores resultater i Technucation-projektet (Hasse og Brok 2015). Et større fokus på elevernes forskellighed og en højere grad af teknologiforståelse hos både skoleledere og lærere sammen med en højere grad af bevidsthed om fagdidaktik i forhold til implementering af robotter vil kunne føre til, at folkeskolen vil være bedre rustet til at udvikle relevante didaktikker sammen med forskere og robotakterer. Derudover peger vores forskning dog også på et behov for en realitets justering af forestillingerne om brugen af robotter
i folkeskolen. Den store andel af de adspurgte skoler, der har svaret ja til brug af robotter i undervisningen (239 ud af 272) peger på, at dette felt, også i fremtiden, vil have forskningsrelevans.
Citerede værker

Frey, C. B., & Osborne, M. (2013, September 17.). The future of employment: How susceptible are jobs to computerisation?

Daginstitutionens betydning forudsætter børn og deres familier i ghetto-lignende boligområder.